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1. Introduction

One of the earliest applications of computers was the processing of visual data. With the benefit of

hindsight, we can see that this reflects the importance of sight for humans, the difficulties faced by those lacking

sight, and the continuing drive in computzr science to automate human abilities.

Thcre is currently a surge of interest in image understanding on the part of industry and the military.

Intcrcst seems certain to expand over the next several decades, as the following list of current applications

indicates:

* AU'OMA'I'ION OF INI)USTRIAI. PROCESSES.

Object acquisition by robot arms. fir example by "bin picking".

Automatic guidance of seam welders and cutting tools.

VI .SI-related processes, such as lead bonding, chip alignment and packaging.

Monitoiring, filtering, and thereby containing the flood of data from oil drill sites or from seismographs.

Providing visual feedback for automatic assembly and repair.

e INSIICION TASKS

The inspection ofprintcd circuit boards for spurs shorts, and bad connections.

Checking the results of casting processes fir impurities and fractures.

Screening medical images such as chromosome slides, cancer smears, x-ray and ultrasound images,

tomography.

Routine screening of plant samples.

* I.I:MO'I ISI-NSING

(arlgraphy, the amtomatic generation of hill shaded maps, and the registration of satellite images with

terrain maps.

Munitoring traffic along roads, docks, and at airfields.

lMan;agemcnm o" I,nd rcourtcs such as waler, fresiv. soil erosim, and crop growth.

Ilhatio,)i 4f' rcm ile r h ustile rcgitins fIor ,iisiI hi.ls aml nllmm mll ouic deposit%.
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* MAKING COMPUI'TER POWER MORE ACCI-SSBIE.

Management information systems that have a communication channel considerably wider than current

systems that are addressed by typing or pointing.

Document readers (for those that still use paper).

Design aids for architects and mechanical engineers.

* MI.ITARY APPLICATIONS.

Tracking moving objects.

Automatic navigation based on passive sensing.

Target acquisition and range finding.

* AIDS FOR THE PARTIALLY SIGHTED.

Systems that read a document and say what was read.

Automatic "guide dog" navigation systems.

Over the past decade there has been considerable growth in the theoretical base of image understanding

(IU) by computer. This article surveys the current state of that theoretical base. As the intellectual climate

for progress in IU improved, so funding became available for much needed basic research. Most of

the work described in this survey was conducted under the Defense Advanccd Research Project Agency's

(I)ARPA) image understanding program at a small number of basic research centers: Carnegie Mellon

University, the University of Maryland, Massachusetts Institute of Technology, the University of Rochester,

SRI International, Stanford University, the University of Southern California, and Virginia Polytechnic and

State University. 'lbc I)ARPA IU program has also produced a number of innovative applications oriented

techniques. For reasons of space, these and other applications are omitted from the present discussion.

There is a considerable diversity of approaches to processing visual images by computer. As a result,

the boundary between dif'ren ihnmsts is often vague, necessirily so. The characteristic feature or IU is tie

coistru tion of rich descriplions froon un isuae, a1n idIea that is Imade more precie in the Iillowing pages. Of

IIlC mllaiy dio.illines hcl clawdn ht Io tI. lim ar c o lartk'ol-r intercol to lhc toHi ipUle.r scienvc co'olmiilunity:

II
-. .- ,-...'--
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image proceising. computer graphics, computer aided dcsign and manufacture, and pattern recognition. image

processing is primarily concerned with the transmission, storage, enhancement, and restoration of images.

Therc arc significant overlaps between IU and image processing, especially in the early processing operations

of edge detection and region finding. William K. Pratt's book [PRA'r781 is an excellent introduction to the

subject. Computer graphics is concerned primarily with the display of visual information. Considerable atten-

tion has been given to represnting points, edges, surfaces, and volumes to facilitate display. The geometry

or perspective and parailcl (or orthographic) projection has been studied in detail. Newman and Sproull's

INIWM73j hook is a fine introduction. Computer aided design and manufacture (CAD/CAM) also gives

attelntio to surfacc representations in order to define paths for numerically controlled tools and for making

desigo by traditional techniqucs such as "lofting" amenable to mathematical analysis. The book by Faux

and Pratt [FAUX79I introduces the mathematics of CAD/CAM. Although these three disciplines are closely

related t) IU, sometimes developing similar representations and uncovering similar constraints, they differ

fronm I1 l in that they are not concerned with the interpretatioa or undersianding of images.

Pattern recognition is much more closely related to IU. Good introductions are available, including Duda

and I lart Il)Ul)A731 and Pavlidis IPAVI.78I. 1hc significant differences between IU and pattern recognition

,,r' the fillowing:

* patern recognition systems are concerned typically with recognizing the input as one of a (usually)

small set ol possibilities. IU aims to 'Construct rich descriptions that can not be enumerated in advance but

need t) be constructed for each indisidual image. Three dimensional scenes, viewed from an arbitrary loca-

tion. gise rise it) a wide variety of occlusion (overlap) relationships. One can hope to compute descriptions of

tlhrec-dillclsimal l;a)out but nol I rcd lgnise it as an instance of one of a small nunber of stored prototypes.

* palthrn rccognition syslenis are mostly concerned with two dinllsional images, Such is leaf samples

or linge~ipits. Wlic ii (lw imageN aic o1 thice-dimensit mal ohjects, stich it, engine pais. they are ell'cti cly

ielIh'd I Is M diii l'sill. 11 . liledii-' ca t h SIlalc po.sili(olI as separatc objcct. IL hi', dealt C te sisel) %% ith

11l11" kill 110'ltlohll. iil im.igs.



e Most significantly, pattern recognition systems typically operate directly on the image. IU approaches

to stereo, texture, shape from shading, indeed most visual proccsss, operate not on the image but on symbolic

representations that have been computed by earlier processing such as edge detection.

Before we begin the survey proper, we note sonic common themes that have crystallized over the past

decade.

* Attention has shi/?edfrom restrictions on the domain of application of a vision system to restrictions on

visual abilities.

The most fundamental differences between image understanding as it is now, and as it was a decade

ago, stcm from the current concentration on topics corresponding to identifiable modules in the human visual

system. Substantial progress has been made in, for example, binocular stereo, the extraction of important in-

tensity changes from an image, the interpretation of surface contours, the dctcrmination of wrfce orientation

from texture, the computation of motion, and the representation of three-dimensional objects. The focus of

current research is defined more narrowly in terms of visual abililies than by restricting attention froim the start

to a domain of application. The depth of analysis is correspondingly greatert. Increasingly, the progression is

from general theoretical developments to specific practical applications. "ie alternative approach of inferring

general principles from work in a limited practical domain is still present, but less so than formerly.

What identifies a particular operation as a distinguishable module in the visual system? Sonic of the most

solid evidence for the claims of individual modules is offered by psychophysical demonstrations of human

visual abilities. Care is taken, as far as possible, to isolate a particular source of information and show that

the perceptual ability in question surviveg. One particularly intriguing source of evidence for modules in

de human visual system comes from the study of patients with disabilities rxsuhing from brain lesions (f.r

example Weiskrantz, Warrington, Sanders and Marshall IWFIS741, Marshall and Ncwcombe [MARS 73L

Stevens SITV 761. Many psychophysical experiments, seemingly isolating parlicuilar modules of ithe human

visual system. have been reportvd in the literature. Notable examnple% include (ib on's demonsmtralim of the

perception of surface shape from testure ,radients [( i lISSSOI. i.,nd's demon,1 1li on of the co nmplltalion (it'



6

lightness 1I AN)71], tH[ORN74], and Julesz's demonstration of stereoscopic fusion without monocular cues

JUt .li711. In some cases there is clear evidence of a human perceptual ability, although such evidence would

hardly be referred to as psychophysical. Horn's work at MIT considers the highly developed human ability

to infer shape from shading tHORN77, WOOD8I, IKEU8lI. Stevens considers the three-dimensional inter-

pretation of surface contours by humans [STEV81J. On the other hand. it is equally clear that we do not

have a specific module in our visual system to recognize "yellow Volkswagens" (see for example [WEIS73).

It is les clear whether we compute depth directly, as opposed to indirectly through integrating over surface

orientations, or what use we make of directional selectivity or optical flow.

The change of focus from a narrowly specified domain of application to a particular module of the human

visual systvnm has had a number of far-reaching consequences for the way IU research is conducted. One

consequence has been a sharp decline in the construction of entire vision systems that mobilize knowledge at

all levels, including informiation specific to some domain of application. In order to complete the construction

of such systems, it is almost inevitable that corners be cut and many overly simplified assumptions be made.

9 Representations have been developed that make explicit the information computed by a module.

A number of representations are discussed in this survey, including the primal sketch, the reflectance

map, intrinsic images, normalized texture property maps, and object representations based on generalized

toncs. A simple observalion, which nevertheless has profound consequences, is that not all modules work

directly on the image. Indeed. it seems that few do. Instead, they operate on representations of the informa-

fion computed. or made explicit, by other processes. In the case of stereo, Marr and Poggio argue against

correlating the intensity information in the left and right images IMARR79b]. Instead, they suggest that edge

hcvioe poinis ,i matched (-cc Scclion 4.1). Baker and Ifinfird. Arnold. and Mayhew and I:risby argue dat

iiatchig ",hold in fact take place on a dilcrent representation, called (he primal sk.tc/4l1A KlI81, AR NO73,

MAYII8II.

Comlbimling this observiiuii ith the previous point aout modules (if the visual systemi leads to a vivw

of v is ,.d ptl wi-cit ll as Ih1c plovcs oi' co( 11IdIIO'i. instance"s 0 a SeIuCI)C 0c f 'representaItion%. I o each inod ile
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there corresponds a representaton on which it operates, and a representation that it produces. Ihe first of

these representations, and the one whose structure is least subject to dispute, is the image itself. Not surpris-

ingly, most attention has centered on those modules that operate upon the image (section 3). As we shall see,

the further we progress up the processing hierarchy, the less secure the story becomes, as the exact structure

of the representations becomes more subject to dispute. This is hardly surprising. The image aside, any

representation is one module's input and another's outpuL Computer science teaches us that all of them shape

its eventual structure.

For example, several modules of the visual system provide information about the layout of visible sur-

faces. Stereo provides disparity, from which local shape and relative depth can be computed. Motion, texture,

and shading all provide evidence for shape. Barrow and Tenenbaum have suggested that a number of different

viewer centered representations make explicit important information associated with surfaces [BARR78. They

*call such representations intrinsic images and propose specific intrinsic images for depth, motion, surface

topography, and color. The name intrinsic images stems from Barrow and Tenebaum's idea that the repre-

sentations are addressed using the same coordinates as the image. For example the color at an image point

whose coordinates are p might be found in representation C as C(p). Others, notably Marr and Florn have

suggested a single representation that makes explicit local surface orientation and discontinuities of depth

[MARR78a, HORN821. The precise details are uncertain at the time of writing.

9 The mathematics of image understanding are becoming more sophisticated

Mathematical analyses have been offered for some of the elements of visual perception, such as te

relationship between image irradiance and scene radiance, the location of important intensity changes, and

motion primitives. In each case, it is observed that the infonnation in the image only partially constrains

the interpretation of the image, and further constraints arc sought. The additional constraints emdlxxy commit-

inents about the way the world is, at least most of the time. For example, the world mostly consists of smooth

surf'aces, and .enes are mostly viewed From a positinm Free of accidental alignments. Perceptual abilities such

a; %rlceol)sis. light.nes det'rmination. and shape Fromi shading and flfom texture, require that the appropriate

I'
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constraints bc uncovered and appropriately expressed.

Most of the analyses to be discussed below begin with a precise description of the representations

operated on and produced by the visual process under scrutiny. Increasingly, "precise" means "mathematically

precise", as the technical content of image understanding has become steadily more sophisticated. Many

observations about the world, as well as our assumptions about it, are naturally articulated in terms of the

"smoothness" of some appropriate quantity. 'iis intuitive idea is made mathematically precise in a number of

ways in real analysis, for example in conditions for differentiability. Relationships between smoothly varying

quantities give rise to differential equations, such as Horn's image Irradiance Equation. We shall discover the

value of making the image forming process explicit. This in turn leads to a concern with geometry, such as

the properties f the gradient, stereographic, and dual spaces. Combining geometry and smoothness leads

naturally to multi-variate vector analysis, and to differential geometry. For the most part, a representation

does not of itself contain sufficient infornation to guarantee that a module can uniquely arrive at the result

computed so effortlessly by the human visual system. Additional assumptions, in the form of constraints, are

required. This observation has led to application of constraint satisfaction and equation solving techniques

from numerical analysis as well as various instantiations of ILagrange multipliers (especially in the fonn of the

calculus of variations).

* Locally parallel architectures have been developed

The majority of the work to be described here had its initial expression in the form of complex computer

pograms. A common complaint about artificial intelligence in general, and image understanding in particular.

used to be that it not only did not run in reel lime. but inherently could not. To the extent that this referred to

so-called "heterauchical" proi!rams of the 1970's vintage, this was justified. I lowcver, artificial intelligence has

been well adt iscd not to nake i cal time perlorinance its most inipoi tant metric of success, since . ich a metric

oflen implicitly assumes a particular, usually scqiicntial, model ofconputation.

Many recent vision algorithms take the lonn of parallel compitations involving local interactions. Once

the ideas ale fiill. fixed in ,ol .re, they are nalturdly icali,ccd in hardware. I ).vih and Roscnldld leview i e
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popular class of program structures, called "relaxation" [I)AVI8I]. In the case of edge finding, one algorithm

has been implemented in rTI. logic (NISH81, and several others in CCDINUDD791. The current rapid pace

of developments in VLSI has further motivated research into local parallel programming architectures. It is

likely that our concept of computation will change as a result of such developments. Vision will be one of the

first areas to benefit from such advances. It seems that it will also be a continuing source of inspiration to VLSI

designers [BATA81. NUDD79]. As more sophisticated ideas are embodied in hardware, new applications of

image understanding will become feasible.

e There are growing links between image understanding and theories of human vision.

For many authors, the changing style of research in image understanding has not been simply a matter

of a narrowing of attention and a more highly developed technical content. Instead, greater significance is

attached to forging explicit links between IU and psychophysics and neurophysiology. From this perspective,

image understanding aims at the construction of computational theories of human visual perception. In

large part, this approach stems from a series of papers written by David Marr and his colleagues at MIT.

Marr's work derives from a background in neurophysiology, and is expressly addressed to psychophysicists

and neurophysiologists, among whom it has excited considerable interest. In particular, it is couched in

terms they are accustomed to, and makes extensive reference to their literature, rather than that of computer

vision. A book describing Marr's thoughts about human visual perception and incorporating summaries of

the contributions he and his colleagues have made across the entire range of the subject is currently in press

[MARRS21.

It might be imagined that there would be considerable differences of emphasis, subject matter, and tech-

nical content between the work of those researchers who see themselves constructing a computational theory

of human visual perception and those for whom human visual perception is at most a matter of secondary con-

cern. 'lIis turns out not to be the case. For example, die ACRONYM system's representation of objects based

upon generalized cone:; hears many *,nilarities if ,' it iproposed by Marr an( Nishihara. who relate their work

to human pen.epli(nhll1OO79, MARl '" I. Again. I hiit and Schunck's work on the detennination of plical

I
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flow has intriguing similarities to the directional selectivity work of Marr and Ullman that was inspired by

ncurophysiology [HORNSIc, MARR81].

Figure I shows some of the representations and modules to be discussed in the remainder of the paper.

The figure is intended to make the organization of the paper easier to understand, but it should be treated with

caution. The organization implicit in the figure is similar to that given in Barrow and Tenenbaum [BARRSIb]

and Marr [MARR781. The representation referred to here as the "surface orientation map" is intended to

cover what Marr calls the "2k j) sketch" [MARR7Ba], Horn calls the "needle map" [HORN82], and Barrow

and Tcncnbaum call "intrinsic images" [BARR78].

The paper, and hence the figure, is limited in scope. As mentioned above, there is little discussion of

applications. There is little if anything about color, and only cursory discussions of motion. The extraction of

useful information from color is still extremely rudimentary. Motion has received some attention recently, but

findings are preliminary. For example, it is far too early to know what information can be computed reliably

from the changing patterns of brightness called the optical flow (see section 3.2). A pervasive view of motion

perc.. ..on is that it arises from temporal changes to the representations that are important for static vision.

The Marr-Hildreth theory of edge detection inspired Marr and UlIman's work on directional selectivity, the

primal sketch led to UlIman's work on long range motion, and Horn's work on shape from shading underlies

the work of Ilhrn and Schunck on the determination of optical flow.

Judged as a flow diagram, figure 1 suggests that the flow of information, and the construction of repre-

sentations. is entirely sequential, proceeding from the lowest level operations on the image to more semantic

higher level operations. Many au|thors have argued that perceptual processing cannot be so rigidly sequential.

Ihey suggest that perception is opportunistic, taking advantage of whatever inlihrmation becomes available in

an image. Natural scenes are norinally highly redundant. Gibson jGIBSS0 notes approximately 23 distinct

cucs fo~r detcrmining depth and strface lJ oil[, many of which are available in most images. I Iowever if only

an unpredictible small %election of cues are availahlc, isiun is miot usually imlpaircd. Only when a single cue is

Il¢eCIL as ill the lahoratory setings ofcxpcrnicitil psychoogy, is uur perceptlltU s ,(cmn easy to fi))I. Minsky
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Figure I. Some of the representations and modules discussed in the paper.

and IPipcrt IMINS72j suggcsted that the flcxible processing of information by thc perccptual system might

L " be%( he modelled by proc.cs ineraction,. This produced a rash oF proglans in which rel:ilivcly high lveIl
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knowledge could actively intervene to modify the course of low level processing. Examples include [SHIR73,

BAJC75, BAJC76B, TENE77, BRAI)78, HANS77, BR0079, SELFBIJ. Similar "heterarchical" programs

were experimented with in speech perception ILESS77]. The performance of such programs did not give cause

for unbridled celebration. Some of the associated difficulties are reviewed in [BRAD79].

A rather different kind of flexibility is made available by local parallelism. [WALT72] showed how a

variety of cues could be combined to yield an overall interpretation. [DAVI81 stress that an attribute of such

process structures is their insensitivity to the sequence in which operations are performed. However, local

parallel processes have their own problems. It is easy enough to start local parallel processes going. It is less

easy to guarantee that they will stop (but see [HUM M80]), or to be able to make solid assertions about the final

state of computation when they do stop. It may be that process structuring will become a key component of

image understanding, but currently it is simply too early to be sure. For the moment it seems best to remain

agnostic and concentrate on the solid achievements of the past decade, most of which are largely independent

of process structuring.

Organization of the paper

In the next section we present a brief review of work in geometrically simple "microworlds". Some

of the generally important ideas developed initially for the blocks world of line drawings of polyhedra are

introduced. Kanade's extension to the world of origami, and Barrow and Tenenbaum's work on curved "play

dough" figures is mentioned.

Section 3. by far the longest in the paper, discusses modules that operate directly upon the image.

Subsection 3.1 concerns edge finding. 3.2 the determination of shape from shading, 3.3 texture, and 3.4

segmentation.

Seution 4 discusses modules that operate on the output of section 3, which, ibllowing [MARR76a]. we

call the prinal sketch. SubsectiOn 4.1 discusses stereo, 4.2 shape from contour, 4.3 %hapc from texlure and

Kendcr's gencrali/aLion to "shape from you name it". Finally, subsection 4.4 briefly discusscs ;,h.ipe from
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Sections 5 and 6 discuss modules that operate on surface orientauons and viewpoint independent rcpre-

sentations.

2. Review of work on geometrically simple microworlds

Beginning with the seminal work of [ROBE621, much early attention of IU was dcvoted to interpreting

line drawings of polyhedra automatically. This work marked a significant break from pattern recognition in

that it emphasized descriptions of the objects present in a scene and the spatial relationships between them.

For example, figure 2 might be described as a cube standing in front of a block. Clowes and Huffman stressed

that the relationship between a scene and its image needs to be made explicit [CLOW7I, HUFF71. A line is

the image of the edge of a polyhedron in the scene. They noted that lines can be labelled as convex, concave,

or occluding(figurc 3a). The interpretation of a line can not change along its length. A junction is the image

of a three-dimensional vertex. Enumeration of the local volumes occupied by vertices, and the appearance

of such vertices from all possible viewpoints gives rise to a set of labellings for junctions (figure 3b). Vertex

labellings embody a local constraint: although there are three lines forming an arrow junction, and each line

has four possible interpretations (counting the two senses of occlusion separately), there are not 4"1 64

physically realizable labellings for an arrow vertex but only 3. Notice that every interpretation of a T-junction

is assumed to signal an occlusion of the stem. Conversely, every scene occlusion gives rise to a T-junction. The

constraints local to each junction propagate along the lines that connect them to adjacent junctions, possibly

rendering some of the initial set of labellings at both junctions impossible. Clowes determined consistent

interpretations by a search space technique. Surprisingly, many simple line drawings have many consistent

interpretations, though occlusion often resolves ambiguity.

I)espitc the geometric restrictions imposed by I luflmnan and Clowes, their scheme had limited com-

petence. First, as Kanade pointed out, the Ilulrman-Clowcs cheme was csscntially qualitative in that it could

not dislin-mish between the Irunicated pyramid %hown in figure 4a and the cube shown in lignre 4b IKANAKII.

I luman pclcelplion is at I.;t partly quaiulit;Itive %incc we readily assil'n sl l)s to line drawni .url'aces amnd
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Figure 2. A typical line drawing of polyhedra studied by Huffman and Clowes.

esimait rectangularity of vertices from junctions. Since the line drawing in figure 4b can be the image of an

infinite set of scenes, it is more precise to say that the I luffman-Clowes scheme could not determine that figure

4a has no interpretation for which vertex A is rectangular while figure 4b does. It is also interesting to ask why

the cube is perceived as a cube. One proposal, due to Kanade, is sketched below.

A second manifestation of the qualitative nature of the Huffman-Clowes scheme is its inability to detect

(he impossibility of the line drawing sho*n in figure 5. Fluffman's paper was principally concerned with

"iinposihle objects" (such as thal depicted in figure 5), and the consequent need ror a more expressive repre-

sCgmtation. lie proposed a reprel.senlation called dual space and an onhographic projection of it called the dual

picture graph. Mackworth IMACK731 dcveloped the idea ofa repre.tlathkin of -urf ce shape firther by intro-

dhiiti,g gradient space, an idea that was developcd in IDRAI80, i)RA'Sl1, 11ORN77. KANA80, KANA81,

II NI )8U. IIUIl 77. SI 1G178, SUGIII.



Figure I. L. The possible interpretations of an image line. b. 7the possible interpretatiorns Of a
triliedral vertex.

Considcr thc imaging Scornctry depicted in figure 6: a surface f(z, y) - z = 0 is viewed from a great

( distanice along the negative z-axis. Applying the chain rule,
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Figure 4 The Ilufman-Clowes. schemne could not distinguish thebe line drawings.

Of dz+!!fdy -dzO= ,

that is

soctlm.t('")j,"f -1I) are thec direction ajtios of uthc stirlacc normi or gradicnt. It is customnary to dcnote Or hy

pav if by 9. The coordinate frame baised on (p, q) is called graidica speuc. As an example consider a planar

faiccI as +I by + c - z = 0. 'Ihc gradient hai p = a, q =b. 'Ibc origin or gradicrnt spiaue corresponds to

stirl~v f~accis that Ivimi directly at flhe viewcr. Moning away frm the origin, it is easy to %hotw thA (p2 + q2)j

is thlkant .ofthe I~dX oml b ..nhle T wbow [m);,cm is 9/1A is Ow~ fiii of the sug 10,' c' ii'lalffigmel 1).
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Figre 5. The Huffman-Clowes scheme could not determine that Lhis-line drawing depicts an
"impossible object".

The coordinates can be aligned so that a vector (z, y, z) = V projects to (z, y) x= x (z x k), where

k is the unit vector in the z direction. In particular, the gradient vector (p, q, -1) projects to (p, q). Suppose

two planes P and P2 have surface nonnals (pi, qi, -1), and suppose that they meet in a space vector i. It is

easy to show that the image I of y is perpendicular to the dual linc connecting 9j = (p ,qt) to g) = (pzq 4)

[MACK73]. Furthermore, V is convex if and only if the order of the g; across I is the same as the order of the

images of P, across 1 (figure 8). Mackworth exploited this observation in a program that was capable of deter-

mining the impossibility of the notched tetrahedron shown in figure S. However. Mackworth's triangulation

solution scheme could not determine the impossibility of the notched cube al-A )own in figure 5 IMACK73J.

)rapcr JI)RAPR1] has analyzled the competence of Mackworth's gradient space scheme and an extension due

to I luflman based on "dual space" 11lUlF771.

The notched eh of ligure 5 illustrates an ass;aImption discimsed by Kan:,dc JK ANA81i. namiely li, i lIhil
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Figure 6. Viewing geometry for defining gadient space.

are parallel in the image are the images of vectors thai are parallel in space. If lincs I, and 12 are the images of

sccne vectors r, and r2. then it is easy to show that 11 is parallel to 12 if and only if the triple scalar product

1vI, ;, k] is iero. It follows that Kanade's parallel line assumption fails only when y I, Y2. and k arc coplanar.

Generally, pcople find it difficult to interpret such foreshortened figures properly [MARR78b, MARR78a].

Kanade IKANASI has also studied an interesting assumption involving what he calls "skew-symmetry".

Consider ligures 9a. 9h and 9c. All three are interpreted as symmetric, planar figures viewed obliquely. As

figure 9d shows. a skew syninctry delines two directions: the image of the axis of symmetry, called the skewed

symmetry axis. and the image of the nonnal to the axis of symmetry that lies in the plane of the figure, called

the skewed Iraosverse axis. Skew symnierics feature promiinently on the cube and truncated pyramid shown

in liguiic 4. Kanade proposes that a skewed symmetry is always interpreted as the iniagc of a real synmnetry

ic Cd Ihloquely. I his :1msdmmntiom, giv s rise 1o a cin.,tr.'iil, cxj)rc.s.ed in I'rinm oif the aggles a and /3 defined
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Figure 7. Slant and tilt in gradient space.

in figure 9d. rMlating the possible gradients of the surface containing the real symmetry. In fact, the-possible

gradients form the hyperbola shown in figure 10. Notice that the possible planes with ]cast slant (the tips

of the hyperbola) have a normal that projects into the bisector of the skewed symmetry axis and the skewed

transverse axis. This accords with a heuristic finding of Stevens IS'EV8o.

It is important to rcalize that the parallelism and skew-symmetry assumptions apply beyond the blocks

world. Kanadc has shown how they can be combined with fluffman-Clowes style labelling and Mackworth-

style algebraic analysis to give both a quantitative and a qualitative interpretation of line drawings in the

microworlds of blocks and origanui constructions (KANAS I.

The junction labelling constraints of Il tifnian and Clowes are essentially hwal. lc constraints ofsurface

i)lan;,ri(y, skew symmetry, and iarallelism arc less local and support more cometitent programs. I lowever.

nC of the constraints are glolal in the sense that they apply SillIultancllusly to all parts of ahe image. Waltz
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Iure pm Convexity preserves order acrow the gradient line.

investigated the global constraint afforded by the shadows cast by a single distant light source [WAU['72].

The number of interpretations of a line rose from 4 to 12, with a consequent massive number of possible

junction labellings. As Draper has pointed out the large (and probably unverificd) labelling sets would be

considerably larger without the assumption of general position of the viewer [DRAP8O]. Waltz's line labels

incorporate in formation about the surface geometry, illumination, and surface-objcct boundaries. The huge

label sets precluded a tree search of the sort used by Clowes [CI.OW711. Instead, Waltz designed a filter

program. potcntially capale of running as a local parallel program, that usually converged to a single labelling

in near linear time. 'The Waltz. filter accelerated investigation of local parallelism. I inc labelling is discussed

by [ULICK77, .'UCK81, lIUMM80]. Walt's program rcaffirmed the value or redundancy when processing

can make appropriate use of it. Ilowever, the complex line labellings c(mfounded too much infonnation from

differenl lvels of the visual system in an impoverished rel)rsentation.
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Figure 9. Skewed symmetry. a-c: examples of skew symmetry. d. definition of skewed-symmetry
axis and skewed transverse axis. (Reproduced from (KANA81l, figure 16)

T7he figures discussed in this section have all ben images of objects with planar surfaces. Sonic atthor.

have tried to relax this restriction. One difficulty with drawings of curved surfaces is that one of the basic

assumptions of de I ilufman-Clowcs work no longer holds: a line cain change its interpretation froin one end

to the other jIIUFI.'711. 'lirlaer [IJRN74I noted Ihat such changes of intefrpreation are not al'hiliary, and

Ilih Ahmed a sotall ntunber of Iralfiirnatidli ois ol,;a line I;Ihcl to ,'rie aIt an in'pretal ir Ilm. Revctilly, Iliilord

4
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Figure 10. A skewed symmetry defined by the angles a and / can be the pojection of a real
symmetry on a plane whose gradient is (p,q) if and only if the gradient lies on the hyperbola
shown.(Reproduced from (KANASI). figure 17)

IlINF:lj and I owe and Binford ILOWi811 have suggested more general interpretations of curved lines that

inay enable labelling techniques to be extended to line drawings of arbitrarily curved surfices (see also section

3.1.3).

ILnrepw aeid 'l'ncnb~lie, IIIAI l78j have also .liidied e IiUCtO o rid ofuir'c'd o)hjcls. Tlhey coial~jnc line
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labelling techniques with Horn's work on shape from shading (see section 3.2) to interpret idealited images of

play dough" scenes.

Work in geometrically simple microworlds has played an important role in the development of image

understanding. From the pioneering work of Roberts, Clowes, and I luffman to the present day, the goal has

been to generate descriptions rather than transformed or classified images. 'lhe key has been to make the

relationships between the scene and the image explicit. Examples include the interpretations of image lines as

visible edges, and the analyses of skew symmetry and parallelism. Mackworth's development of gradient space

points up the need for rich representations. Finally, Waltz's work shows that redundancy can be exploited by

appropriate computing mechanisms.

Microworlds also set traps. It is irresistably tempting to deploy domain specific information at the earliest

opportunity. Planar objects have a number of global properties that are not enjoyed by curved objects. For

example, two planes intersect along a single straight edge in space, so that from any given viewpoint, one

plane is always in front of the other on one side of the image of the edge, and always behind it on the other

[DRAP8II. The labelling schemes of Huffman, Clowes, and Waltz, extended to idealised images of curved

objccts with reflectance patches and shadows, produce a vast number of labels that confound many distinct

sources of information in a single label. It seems more fruitful to attempt to tease out the information provided

by each of these sources separately.

3. Modules that operate on the image

3.1 Edge detection

A great deal of effort has been devoted to understanding how die significant intensity changes in an

image can be extracted, and how the rcsoiltant information can best be represented. Marr coined the tenn

primal sketch to describe such a representation IMARR76aI. Signilicant intensity changes correspond to a

variety of events in a scene, such as depth, refleclan'e, and shadow hundaries, as well as discontihlilties in
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surface orientation. The image intensities l(x,y) form a surface that is a discrete approximation to one that is

continuous nearly everywhere [ROSE76, PRAT79]. Quantizaton and sensor noise of various sorts complicate

the formulation of a predicate that can completely reliably determine which intensity changes correspond to

perceptible scene events (that is, which are "significant").

It has been observed repeatedly over the past twenty years that intensity changes correspond to maxima

of the gradient of the image surface, equivalently a place at which the second derivative crosses zero and

changes sign. Many local operators have been developed to approximate first and second directional deriva-

tives by first and second differences. A representative sample is shown in figure 11. Mostly, such operators

were developed and tuned for a limited domain of application.

Figure 12 shows an idealized step change in intensity and the response of first and second difference

operators. In practice, gradient operators tend to produce a large response over a broad region flanking an

edge (see figure 14, also [BINF8IJ), especially with intensity changes other than steps. As a result, feature

points from a gradient operator have to be thinned, a process that makes it difficult to kxalize the position

of the edge as accurately as with second difference operators. On the other hand, errors grow rapidly as

differences are taken, so that second differences are much noisier than first differences.

A recent edge finder, which appears to work well on a range of natural images, is due to Nevatia and

I1abu [Nt'VA78]. It applies the six gradient operators shown in figure 13 to each point of an image and

chooses the one giving the best response if (1) it is high enough and (2) it is not dominated by the responses

at neighboring points in a direction which is normal to the same apparent edge. Ibis process is followed by

thinning, thresholding, and line fitting. Some indication of the performance of the Nevatia-abu algorithm

can be sen in figure 14.

Binford has argued that it is important to distinguish between the detection of an intensity change and

its subscquct localization IBINF8II. t1 suggests that a maximum of a noisy signal is good for detecting

change but not For iulation. Convcrsely, a zero Crossing is idcal for localizing change hut not for (letection.

Ma Vicar-Wela rand Ilitforl find adjacent pixels between %% hich a second dilfrcncing-like operator changes
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MFue 11. A selection of musks frofn (be image understanding literiturfe used to Comlpute
approximations to the Mrt. derivative or an image in the x direction.

sign IMACV811. Using linear interpolation they claini to bc able to localize intensity changes with sub-pixel

accuracy. Sub-pixel accuiacy is also claimed by JMARR79I in thc context oif vernier acuily. wheie thec ye is
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Figure IL. The response of an edge and bar operator to an ideal step change in intensity, a. The
intensity change. b. The response of a typical first difference edge operaltor such as that shown
in figure Ila. c. The response of a typical bar operator such as that shown in figure Ile.

able to peceive breaks in lines that arc more closely spaced than the physiology of the eye would seem to

permitz IMARR79I.

Real images are rurther complicated by defocussing and the frequent occurenice of slow intensity

gradients across large portions of the image. Humans are largely unaware of slow linear intcnsity gradients

ILANl)71. MCCA74J. This seems to be because of "lateral inhibition", where the image is processed by

"centcr surround" operators (figure 15) that resemblc rotationally symmetric second differential operators.

Ilecrskov'i% and Ilinford 11-1 RS7OJ proposied an early taxonomy for dhe intensity changes they found in

iniagcs of polyhedra, classifying them as "step", "roof', or "edge" changes (figure 16). As we shall elaborat~e

below. they proposed different operators F.te,. P. and FKgg, to detect each diffecrent. type of intensity

t. hange. It is comimonly supposed. especially in applications where scenes arc effectively flat, that (lhc majoity

(11' II1tcliity chaiiges arc of the simple %tcp type. Many detect iog Ychcmcs arc piedicjted upon thi';a! stiniptioii.-
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iniervals.



Iqgun~ ~~CM11 fit. S.,pe*,jg Ilunning the Ncuiil o Iaftnaklm op.'roiai, (over nshrdbge



29

Figure 15. A center surround operator.

Herskovits and Binford [HIRS70 and Horn [HORN77I observe that step edges typically correspond to depth

or reflectance boundaries, whereas the equally important class of intensity changes corresponding to surface

orientation discontinuities often give rise to roof and edge transitions. Marr refined the Hcrskovits and Iinford

classification to include "extended edge", and "thin and wide bar" (figure 17) and proposed a variety of

operators of difl'erent sizes to discriminate between them [MARR76a].

The construction of a primal sketch representation from an image has three distinguishable stages: (1)

"feature points" are detected at which the intensity change is deemed to be significant; (2) feature points

are grouped to form line segients, or small closed cont(mrs; (3) these line segments arc interpreted as scene

events, say as bounding contours or as true edges of visible surraces. hese three stages arc discussed in turn in

the tillowing subsections.

C Th C operors shown in lipire I I are directionally scleclive. Some authors have proposed the use (f ro.-
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Figure 16. The taxonomy of intensity profiles proposed by Herskovits and Binford. a. idealization
b. examples.

tionally symmetric operators, such as the Laplacian A, for edge detection IBRAD81bI. Several reasons have

been advanced. Some authors prefer theoretical argumenKa noting the (near) isotropy of human vision and

the fact that thc center surround operators giving lateral inhibition are rotationally symmetric. Others have

strecsscd practical considerations. For examnple, in her discussion or the Marr-Hfildrcth theory of edge detection

(to be discussed in section 3.1.1), llildrcth j1ILJ80,page 131 notes that "a number of practical considerations,

which will be illuninated in the discussion or the implementation, suggested that thc ... operators not be

directional". Suppose instead that directional operators arc used. Most algorithmns for finding feature points

lime two stago's: first, the image is convolved with directional operators in "sufficiently many" directions, and

'.cconul, the outputs arc combined to determine the orientation and extent of intensity changes. Regarding

the firmt stage, both Marr and I fildreth IMARR8Oa, page 1931 and llildreth IIIII.)80, pagc 401 commntt

on the c, it of convolving with a "sullicient" number of operators. 'I'ey show that a single: rotamtionally, svm-
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Figure 17. Marrs classification of the intensity changes that occur in natural images. After figure
2 of IMARR76aJ

metric operator (the Laplacian) gives precisely the same results if a condition called "linear variation" holds.

Regard ing the second stage. Hildreth IH ILDI80, page 361 observes that edges in a direction close to that of

the mask are elongated ("smeared") in die direction of the mask. She also notes that operators at several

orientations give significant responses to any given edge, and that combining the responses is non-trivial.

Other authors are lessconvinced of the need for rotationally symmetric operators f~r edge finding (FIINFI-J1.

The issue of control arises in edge finding as it does in all other areas of image understanding. It has

been argued that it is not possible to find significant intensity changes, group them, or interpret diem without

engaging quite high levcl knowledge. Ilaicsy and 'lavakoli (IIAJC7S, IIAJC76111 were early proponent% of this

view. as was Shirai 1S111R731. Davis and Rosecnfeld survey die application of relaxation processing to isolate

Wature poifll% JD AV 1811.
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3.1.1. Findingfeature points

Although many of the published schemes for detecting and isolating feature points were discovered

empirically, there have been three main approaches to making edge finding more precise. The first consists

of locally modelling the image by a parameterized analytic surface and determining the best fitting choice

of parameters given the actual intensity distribution. The second is Binford's application of signal theory to

edge finding. Finally, Marr IMARR76a] and Marr and Hildreth [MARRSO] have developed a theory of edge

finding in the human visual system that takes account of neurophysiology and psychophysics. We discuss each

of these approaches in turn.

Surface filling

The derivation of operators to approximate first and second differences by least squares surface fitting

was introduced by Prewitt [PREW70], and Hueckel [HUEC71]. IBROO78, HUMM79, HARA80] give good

introductions to the method. In the simplest case, where noise considerations-are ignored, two things must be

chosen: (1) the size of the local neighborhood or window in which the surface will be fit, and (2) the function

to approximate the image surface in the window. For simplicity, we choose a window of size 2 by 2 and

approximate the image surface in such a window by a plane P(z, y) = az + by + c. Haralick [HARA80| calls

this the "sloped facet" model. Assuming that the response of an edge operator is independent of the choice of

coordinate origin, we assume that the window covers z - 0, 1; y = 0, 1 (figure 18). We determine the best

fitting choice of parameters a, b and c by least squares minimization of the difference between the intensity

values actually found in the window and those predicted by the function P(z, y). The square of this difference

is given by

C" = (a + b + c -I(I, l) + (a + c -I(, O) + (b + - (0, 1)) 2 + (c -I(0, 0))2 ).

Fora lct squarcs lit, we first set
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S

-=0

This implies

2a + b + 2c = 1(1, 1) + 1(1, 0).

Similarly, setting and equal to zero, we get

a + 2b + 2c= (,)+ I(0,1),

and

2a + 2b + 4c = 1(0, 0) + (, 0) + 1(0, 1) + I(, 1).

Solving, we see that

2a = (1, 1) + (1, 0) - I(0, 1) - I(0, 0),

and

2b = 1(1, 1) + 1(0, 1) - 1(1, 0) - 1(0, 0).

'lie gradient of P(z, i) in the z-direction is °aS rb e pt
- a. Similarly, b. We can depict the

gradient operators a and b as in figure 18.

Haralick has extended the basic scheme illustrated above to model the effect of sensor noise IIIARA8OI.

I le adds a normally distributed noise term 7(z, y) to the function P(z, y) and shows that an F-test is ap-

propriate for deciding whether or not there is a significant change in the slope (of adjacent sloped faces. Ilere

C " "significant" is given its usual 1% statistical meaning.
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Figure 118. a. The 2 by 2 window covering pixels (0.0) to (1,I). b and c. The gradient operators
that result from best fitting a plane ("dloped facet") in the window shown in a.

Nooks 1l1R00781 considers itting planes and quadratics to 3 by 3 windows. Thc bcst fit plane gives the

Prcwitt operator shown in figure 11, and the second derivative of the best fit quadratic gives the bar mask

shown in figure 11. Brooks observes that the dot product of the gradient operators a and b in figure 18 is

zero. Iis suggests that it may be possible to develop an orthogonal set of increasingly higher order masks.

One natural choice for such an orthogonal set is the set of Fourier basis functions. Other choices arc Walsh or

I ladamard functions. Ilie best fitting cihoie of Fourier basis functions was developed by Hucckel in an early

application of the function fitting idea 11 IUIIC71j. O'Gorman proposed the use of best fitting WValsh functions

[uoG1j.

Recctitly. Ifinfiwd 1111Nl811 has ootlined an approach to edge linding that has its roots in two early uin-

pubahlkivid papcrs 1ll 1ERS70. I lORtN731. The details atre nott completely clear and would be a %altiable addi ti i
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to the literature. It was noted above that image noise makes it difficult to determine reliably which intensity

changes are significant. Herskovits and Binford showed how to estimate the signal to noise ratio for an image,

and determined that the error is typically about 1% for a zero signal. T1hcy studied intensity profiles in scenes

of polyhedra and proposed the classification shown in figure 16. The response of a bar mask to an ideal step

edge is shown in figure 19 (see also IMARR76a. Clearly, as the number of points in the bar mask increases,

the operator can detect steps of lesser heights more reliably. Herskovis and Ilinford make this idea more

precise by defining the sensitivity of an operator as the signal "or which detection is 50% successful.

The intensity values determined by sensors are most reliable in the middle range. Accordingly, Herskovits

and Binford [HERS70, page 361 suggest upper and lower thresholds u and I on intensity. 'Ihe ideal step gives

rise to a band of u's flanked by a band of i's. Define L to be the number of points at which the value is u in

the left band minus the number of points at which the thresholded intensity is 1. Similarly, R is the number

of points in the right band at which the thresholded value is u minus the number at which the value is 1. If

F'itp = L - R is big enough. a local maximum is found. In this way the step is detected though not localized.

Figure 19 also shows the response of a bar mask to an ideal roof intensity change. Note that unlike step

changes, the response reaches a maximum in the vicinity of the top of the roof. Accordingly an operator Fe,.,!

is defined as the difference R + L. that is the difference between the number of values u's and i's summed

over both bands.

A refinement of the scheme is described in IBINF8II. The operator E',p approximates the derivative

of the second derivative, or equivalently, detects the step intensity change by lxking at the third derivative

of intensity. 'Iie intensity change is then localized from the zero crossing of the second derivative. A roof

.hange is detected from the maximum of the second derivative and localized from the zero crossing of the

third derivative.

'I he operators Yt Fp,, and a similar one for "edge effects" were incorporated in the Ilinflrd-tlorn

line finder 1I1ORN731 and discssed retrospectively in [IINF8I].

AIarr's approa'h to edge deit'ai',, bn ihe human viial suslem
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Figure 19. Rc.x)nsc of a bar m.k to an ideal ep (a) and roof edge (b). 1. The intensity
change. 2. Response to a lateral inhibiion operalor. 3. rDeivative of 2.

A novcl feature of Marr's developmcnt of the primal sketch IMARR76a] was iLt direct reference to

mRII.rol)hmlodoy a.nd psycli pysics, a comnitment MI.ir cotinued to strem in later work. lilrr's .lgoritmh t

"-I.
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for computing the primal sketch from an image had a number of interesting features. First, being inspired

by neurophysiology, Marr applied the findings of Hubel, Wiesel, Barlow, and others, which seem to suggest

that an early stage in the processing of visual information consists of convolving the image with edge and

bar masks. As we observed above, such masks signal an approximation to the first and second (directional)

derivatives of the intensity function. Marr based his algorithm on an analysis of the response of bar and edge

masks to ideal instances of the scene events that give rise to intensity changes. 'he algorithm itself consisted

o convolving an image with a number of edge and bar masks and then "parsing" the results by comparing the

actual responses to those predicted for ideal scene events. It was noted that bar masks seemed to give more

reliable information than edge masks, an observation whose explanation awaited the later development of

AG operators which have a similar cross section (see below). The algorithm convolved the image with masks

of different panel widths. Although the later justification for this would be in terms of separate processing

channels, the original explanation was based on the need for noise reduction, although this idea was never

formulated precisely. In any case, the outputs of the individual channels were combined, not only to reduce

the cffects of noise, but to compute measures such as the "fuzziness" of an edge. The idea of combining

the outputs of independent channels remains an important goal of the work on zero crossings, but, with the

singular exception of stereo (see below), it has not yet been worked out.

Marr and Hildreth [MARR80, page 1891 point out that "a major difficulty with natural images : that

changes can and do occur over a wide range of scales, so it follows that one should seek a way of dealing with

the changes occuring at different scales." One way to do this, which has been proposed several times in the

image processing literature, is to pass the image through a number of band limited filters. The difficult issues

raised by the idea concern the choice of filters (bar mask, Fourier, Gaussian), the number of them, and the

exact band pass characteristics of each.

Intensity changes are localized in space, a fact which derives from their physical causes [I IORN??,

MARR76, MAR R80a]. Marr and I lildreth argue that they are also lx:alized in the frequency dinmain. Marl

and I lildreth IMAIHRX0. page 19fl note that "unfortmiately, these two lcaliationt requiremmt%, the one in
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the spatial and the other in the frequency domain, are conflicting". he Fourier transform of a bar mask has

components of arbitrarily high frequency. Similarly, the inverse transform of a bar-like band pass filter in

the Fourier domain has significant "echoes"; [HILD80] gives examples. They point out that a Gaussian filter

optimizes localization in both domains simultaneously, and so it is chosen as the band limiting filter in their

theory.

For the practical considerations given in the introduction to this section, Marr and Hildreth propose the

use of a rotationally symmetric operator to find feature points. An obvious candidate is the Laplacian A (see

(BRAI)81J for a discussion of rotationally symmetric operators). The Marr and Hildreth approach to edge

finding follows Gaussian smoothing by convolving the image with a Laplacian. thus isolating the positions of

zero crossings. In fact, by the convolution theorem [BRAC65, page 1181,

A(G*imag) = (AG)*imagc,

where G is a Gaussian operator, and * denotes convolution. Marr and Hildreth rMARR80, page 1931 point

out that the AG operator closely resembles the difference of Gaussian (DOG) operators proposed by Wilson

and Giese WlIS77] (see also 1Wl S791). Indeed they show that AG is the limit of a DOG, and that the DOG

closely approximates it. The two-dimensional cross section of the AG operator is shown in figure 20a. It can

be thought of as a smoothed version of a bar mask cross section, and may explain Marr's heuristic preference

fOr bar masks over edge masks mentioned earlier. Wilson and Bergen's work suggests that there should be

four bandpass channels at each retinal eccentricity, and that their characteristic sizes should scale linearly with

eccentricity, being smallest in the fovea aud'doubling in size by about 4'.

Sh;ninugam, Dickey. and Green investigated the characteristics of the optimal frequency domain filt(r

flr edl,.g' detection ISIIAN791. Ily "optimal" they mean the filter that produces the maximum energy in the

vicinity of the location ofa (step) edge. Jernigan and Wardell IJIERNlJ have shown that thore is no significant

dilffrence between the optiImi/ig filter deii~cd by Shainmu1ga;n, I)ickey. and Green. and the difference (if

l iatmssan filter pr(opsd by Will.,n .mid Irl-vn. The chaii.icwrisits of the Shainiutgani )ickey anid (Ureen

4- .
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filter are largely determined by a constant c that is the product of the frequency domain bandwidth of the

optimal filter and its spatial interval. As c increases, the signal to noise ratio increases. However, for fixed

bandwidth, the improved signal to noise ratio is achieved at the expense of resolution.

Recently, Marr, tlildreth, and Poggio have noted evidence for a fifth, smaller channel in the fovea

[MARR79a]. Brady [BRAD80a] has shown how the Marr-Hildreth theory can be used to explain a number of

psychophysical results about parafoveal processing in reading.

Figure 21 shows images of a leaf and a coffee jar which has been sprayed with black paint to provide

a textured surface for stereoscopic fusion (see below). Figures 22 and 23 show the images in figure 21

filtered respectively through the coarsest and finest resolution channels in the fovea. Figure 24 shows the zero

crossings of the Laplacian applied to the filtered images shown in figures 22 and 23.

One of the novel aspects of the implementation of the theory concerns the sizes of the AG operators.

-dge finding operators are typically at most 7 pixels square; the smallest operator used in the implementation

of the Marr-Hildreth theory at MIT is 35 pixels square. Not only are the resulting operators much closer

approximations to the Gaussian (or any other filter for that matter), but the signal to noise characteristics of

the smoothed images is vastly improved. One practical consequence of this seems to be that for computing

the orientation of visible edges one can approximate differential operators by simple difference operators.

Conventional edge finding operators confound filtering and differentiation, and have poor and essentially un-

predictable filter characteristics. The first implemented version of the Marr-flildreth theory took on the order

of three hours to compute the zero crossings in the coarse channel of an image 512 pixels square. A prototype

hardware implementation reduced this to 30 minutes. Nishihara and Larson report a iIT". inlementation

that computes and displays the zero crossings in any channel of an image 128 pixels square in under 0.25

seconds [N ISH8 11.

Dire'tional selectivio, for motion

Marr and UIIman IMA I R8II investigate the possibility that the time rate ofchange of
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can enable one to detect the direction of motion of zero-crossings. Define

OS(z, Y, )
T(z, y, t) =

so that

T ( x , , t ) = _a * ° _ _( _ 
' 
_ .

Figure 25 is based on [MARR81, figure 3]. It shows the response of S(x, y, t) and T(x, y, t) in the

vicinity of an isolated intensity edge. Notice that for motion to the right, T(z, y, t) is positive at the zero

crossing, while for motion to the left it is negative. Marr and Ullman propose that motion to the right can

be detected by the simultaneous activity of S+, T+, and S-. On the basis of this analysis they find close

agreement at moderate speeds between theoretical predictions and cell recordings (see figure 15). Richter

and Ullman IRIC1180 have accounted for the discrepancy at high speeds, and generally refined the model

of directional selectivity, by noting that the two Gaussians whose difference approximates AG act like RC

filters, composed of a resistor and a capacitor, with different time constants. 'Tis causes a slight delay in the

onset of the negative outer part relative to the positive central part. Richter and Ullman's predictions show

remarkable agreement with cell recordings for a wide variety of stimuli (see figure 26). Coincidentally, Richter

and Ullman have proposed a theoretical structure for the outer plexiform layer of the human retina in which

AG is computed. This suggests a particular VLSI implementation of AG. The general scheme is illustrated in

figure 27.

3.1.2 Grouping feature points.

'Ibe methods of the previous section produce a set of feature points (figure 28) corresponding to places in

the image at which the Intensity change is considered significant. 'Ibe next stage of prxessing imposes struc-

ture on the sea of individuated feature points by grouping them to fonii extended contours. Marr IMARR76,
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page 5011 argues that "grouping processes are available precisely because they are needed to help interpret

the primal sketch; and furthermore that these symbolic processes, together with first order discriminations,

operating recursively on the description of the primal sketch, are sufficient to account for most of the range of

'non-attcntive' vision of which we are capable."

We may assume that there are few accidental alignments of object boundaries, shadows, reflectance

boundaries, and surface discontinuities (also called "true edges") in the scene, that is, the image is taken

from "general position". Then nearby feature points mostly arise from nearby scene points and for the same

underlying physical cause. It follows that the descriptions associated with adjacent feature points that are per-

ceptually grouped are very similar. If feature points have reliable and rich descriptions, perceptual grouping

can be more effective. Similar considerations apply to other cases of local matching in vision such as stereo,

motion computation, and the determination of texture.

Each of the methods for finding feature points described in the previous section has associated grouping

processes. For example the Binford-Horn line finder compares feature points locally on the basis of the size

of the contrast step across the intensity change, the type of intensity change, and the slope of the gradient

tHORN73, page 71. Marr [MARR76, page 503] also groups feature points on the basis of "orientation,

contrast, type(EDGE, LINE, etc.), and fuzziness". He notes that "the first stage of grouping combines two

elements only if they match in almost all respects, are very close to one another, and if there are no other

candidates." Typical results of this process are shown in figures 29 and 30. Marr proposes a number of opera-

tions that group the short line segments produced by the first stage on the basis of collinearity, proximity, and

similarity of slope IMARR76a. 'lhe results of these operations are histogramined locally and the dominant

structures made explicit. Figure 29b shows die herring bone stripes computed from figure 29.

Many images contain extended straight contours, mostly corresponding to the straight edges that prevail

in our man-made environment. )uda and Ilart I )U)A 731 and O'Oorman and Clowes [OGOR731 populariyed

a method inlroduced by I lough for finding siraight lines in images. Ballard IIIAI.I.791 has extended the

method considcrahly. and we follow his development here. Suplxse that one is interested in dimovering
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instances of circles in an image. Ballard proposes to find the circles from the feature points that form their

contours. Let there be a feature point at point (z, y), and suppose that the gradient of the intensity change is in

direction 9. A circle is uniquely specified by three parameters: its center (a, b) and its radius r. To pass through

the feature point (z, y), such a circle has to satisfy the constraint

(z - a)' + (y - b)=

The gradient slope imposes the additional constraint r = (y - b) sec 0. It follows that each feature

point constrains the circles passing through it with the given slope to a one parameter family. As before,

adjacent feature points normally come from the same circle. There are two simple techniques for combining

the additional constraint. First, one might intersect the one parameter families in the spirit of line labelling

(see section 2). The noise inherent in the measurement of the center and radius suggests that something akin

to a relaxation technique be used to find optimal circles. Several authors have suggested such an approach

[ZUCK77, DAVISi]. Line labelling essentially combines evidence by an AND operation. Alternatively an

OR operation can be used, corresponding to a summation or histogram. To accommodate noise, the range of

possible values for the center and radius are quantized for each parameter to produce an "accumulator array".

FRch feature point contributes one vote to the (at, b, rL.) buckets in its one parameter family. Local maxima in

the accumulator array are assumed to correspond to instances of circles.

Ballard has extended the Hough transform technique of combining constraints on defining parameter

values to non-analytic functions and has shown how to estimate the effects of noise (BALLS l].

3.1.3 Interpreting feature point segments as scene events

In the discussion of the microworlds in section 2, we noted the key contribution of Clowes and Huffman

who stroiscd the need to make explicit the relationship between image fragments and scene events. The line

lc1ling .chemcs of Iflilman. Cloes. Kaiade, Sugihar,, and Wailt.. and the surfiK'c Iahelling schemes (if

Nlackworth, I luffman, and )riaper all developcd this rItdunIdtmnltl idea. Gcncrali/ing frm l ihe blocks world,
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Figure 2. image or a Iwfr and the feature points found in it using the Marr-Jldreth Ihtory of

edge detection. (ReproduLed from IHILD , fOgure 31

' l'urncr and Harrow and 'Tenenbaum developed labelling schemes that made explicit the possihle inzerpreta-
lions ofcedgc and surfaces in their microworlds.
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Figure 29. imcie of a piece of herring-bone cloth and typical stripes extracted from it on the
hosis of slope of gradient at feature points. (Reproduced from [MARR76a figure 19D

(One would like u) extend line interpretation to feature point segments. longated segments correspond to

hoxttd,a, ics that mark imporxmit sLenc events: that is Ahy feature Ipints were isolated in the first plaic. Thc
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Figure 30. a. An image ." a piece of twced and the fealure points found in it using the Marr-
Hildreth theor) of ed e detection. The figtire illustrites gr uping on the hasis or orientaltion of
the gradient of feature points. b. imae of bricks and fIlmure points grouped on the basis of
contrast. Reproduced from [IIILD80. figure 251

C first dttcmpt to extend blocks world labelling schemies to real imagcs seems to hImuc been lRajcsy anwd "lavaukoli'
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model based interpretation of aerial photographs [BAJC76a.

Marr noted a correlation between different types of intensity change and the scene events that often gave

rise to them. Entries in the primal sketch were marked with their interpretation in the scene, such as "edge",

"shading edge", and "extended edge" [MARR76, page 4901. With the development of zero crossings, and

the dc-cmphasis of bar and edge masks, it is unfortunately no longer obvious how to compute the assertions

that Marr had previously advocated for inclusion in the primal sketch JH ILDO, page 75]. The whole issue of

constnicting the primal sketch from zero-crossings is far from being resolved.

Ilinford [IINF81] and L.owe and Binford [LOWF81 have recently made an initial pass at the problem

of interpreting feature point segments. Compared with the blocks world labelling schemes, the labellings

that Lowe and Iinford propose are very general. A segment is interpreted as a space curve, and constraints

formulated on coincidence and the situations in which a curve corresponds to a bounding contour or true

edge.

• m | m - -- -
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3.2. Determining surface shape from intensity values

Horn and his colleagues at MIT have studied the perception of shape from grey level shading. Thc input

to the "shape from shading" process is the image and the output is some appropriate representation of surface

shape. The exact form of the latter representation is not yet fixed, although JHORN82] offers some thoughts.

Since we can perceive surface shape locally, in scenes with little or no semantic content, a reasonablc first

approximation is to represent the shape of a surface by its local surface normal. This requires two paramneters.

say p and q. The relationship between shape and the intensity I at a point (z, y) in an image takes the fonn

J(z, y) = R(p, q),

wh ich Iorn [HORN77] calls the image irradiance equation. Mathematically, the image irradiance equation is a

nonlinear first order partial differential equation. Horn [1IORN771 notes that the function R encodc(s the posi-

tion of the viewer, the distribution ofl light sources (assumed to be fixed), and the reflectance characteristics

of the surface material. Horn and Sjoberg [IIORN79 derive the relationship between the function R and the

bidirectional reflectivity functions used by photometrists, and they show how to calculate it in particular cases.

One important special case is Lambertian reflectance, where the intensity varies as the vector dot product of

the local surface normal and the direction of the light source.

One useful parameterization of the local surface normal uses the partial derivatives p = and q ,

where the viewed surface is z = f(z, v). 'Ibis gives rise to the representation introduced in Section 2 called

giadti'l! spice. Two comments are in order. Firt. since slant and tilt (as defined by figure 7) have natural

perceptual meanings, one might argue that'the polar form of gradient space is preferred by the hunian visual

system. Stevens IS'lFV80] develops this argument, and some further support for the position is provided by

1W IrKIIl.

Second, there is a basic problem with gradient space, namely its inability it represent occluding., hound-

,aric:. at which the S.l face turns away from the %iewLr. At occlidiiig houndai s the slant anglc is , so

that its tangent (a in liurc 7) is infinite (note that Ihis olhjection does not applv to using thc ai,0l', a and
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r as jSII801 notes. lkcuchi and Horn IlK IiU81] introduce a different parameterization (1,9) of surface

orientation that they call siereographic space. Formally. f and g arc related to p and q by

2p(Vlrt+ pl+ q1-)

and
2q( ,r1 + -p2 + q2 - 1

Ikcuchi and I lon introdue the Gaussian sphere, and show that gradient space corresponds to projecting the

Gaussian sphere onto the plane from its center, whereas stereographic space is the result of projecting from thc

north pole (when the viewing direction is from the south pole).

Although it cannot represent occluding boundaries, the mathematical development associated with

gradicn! space is easier. and so it is used in most of this section. For a fixed distribution of light sources, and

fixed reflectaince characteristics, the image irradiance equation associates a brightness value with each surface

orien~tation. *Mus we can assign a brightness value to each point of gradient spacc. 'Me representation is then

called the ,ifleclance inap(110RN77J. It is convenient to scale brightness values to the range [0, 1], and to make

iso-brightiicss contours explicit. Figure 31 shows the iso-brightness contours for a Lambertian reflector in the

case of a single light source near the viewer. Figure 32 shows the result of moving the light source away fr-om

the viewcr. while figure 33 shows the reflectance map for a gloss surface which approximates white paint.

I Living set uip the representation of the output of shape from shading, we now consider some of the

Algorithmns Iliat have been proposed for actually determining shape from an image. Recall that the image

ii ridiaiice equiation is a (usually nonlinear) first order partial differential equation. As such, it can be ap-

lproalcel oiinlii (one of the standard techniques for solving paitial differential equitions. I lon [ifORN7SI

applied Ilit Lharacteristic stiip inethod of solving partial dilrerential equatkins to reformulate the image in-

ramdiumcc cvqoalion atsa set of five ordinary dillerential eqluations. liesoluti mirfacc is

Az V)
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and thc hnagc irradiance equation is

I(z, V) - -.A q) 0. (2)

lhc surface normal has direction ratios (p, q, -1). The characteristic strip method computes the solution

surface by finding a family of space curves (strips) whose local tangents all lie in the tangent plane of the

solution surface. Such a curve can be specified by a one parameter family of points ((s), a), z(8)). where 8

corrcsponds to the distancc traversed along the curve. Differentiating equation (1) with respect to a, wc find:

d +q _ d 0

dd
It tolhuws II]at ) lies in the tangent plane of the solution surface. Since pRp + qRq- (pRp + qR1 )

is idcntically zcro. (Rp, Rq, pRv -+ qRP) also lies in the tangent plane. Equating these two vectors gives the

IVolowing three cquations:

dx

d8
dz

Finally. difterentiiatiug equation (2) with respect to x gives:

1, Rp, "4 Rq .

'iCe py - y q. we find

Is -: JipPz + .l,1)

,mel Se,
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dp

Similarly,

I dq

The characteristic strip formulation was used by Horn [HORN75] as the basis of an iterative computation

as follows. Suppose that we know that image point (z,,, y,,) corresponds to a surface point at which the surface

gradient is (p, q,). Refer to figure 34, which shows iso-brightnes contours passing through (x,,, y,,) in the

image and (p, q,,) in the rcflectance map. Consider a step da along the characteristic strip, from (,, y) to

(zn +I, i YFI) and, correspondingly, from (pn, qn) to (pn,-, qn+I). The five ordinary differential equations

given above show that the step in the image is in the direction (R,, Rq), that is to say, along the normal to

the iso-brightness contour in the reflectance map. Similarly, the step in the reflectance map is in the direction

normal to the iso-brightness contour computed in the image. In this way, knowing the reflectance map, one

can proceed to compute a sequence of points and local gradients along the characteristic strip starting from a

point in the image at which the surface gradient is known. Figure 35 illustrates the results of applying Iorn's

algorithm.

One problem with this method concerns the choice of the singular image point (zip, , ) required to .trt

the iterative process at which the surface gradient (p, 9)) is determined uniquely by the intensity data. A

further problem is that Horn's algorithm depends on the assumption that the underlying surfitce is locally

convex at the singular point. Finally, the class of image irradiance equations for which Horn's algorithm

works was unknown. (Ibe latter question has recently been answered by IIBRUS8I1.) Consequently reearch

wa, directed to discover the criteria under which the shape of a surface is uniquely deterneiied by an image.

One suggestion was that bounding or occluding contours )rovidcd ,such coiditions. Along such contouls, the

C" ~ 'ilace nornim111al callbe CoI)utcd exactly fromii the ilmage. I lowever, (KI.h(fill|; COM0IIIr. 1ose dl problel hr

I
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Figure R. Th is or i it it,,,% ierative ctiunptimit or shape row, shudinty by ic chanictcrislic
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the gradient parameterization of local surface orientation, namely dut at least one of the gradients p or q is

infinite. This led lkcuchi and Horn [IKEUSI] to propose stereographicpeojection as defined above.

Ikeuchi and Horn [IKEUBI] note some additional problems with the characteristic strip method. First,

since the iterative method outlined above proceeds unidirectionally along a characteristic strip, it cannot

exploit boundary conditions at both ends of the strip. Second, the build up of numerical errors along any in-

dividual strip can be substantial. A novel feature of Horn's [HORN75] algorithm is the simultaneous develop-

ment of several characteristics to control the build up of error in any one. Woodharn [WOODSB] observes

that one can solve for surface shape if one makes a global assumption about the surface type, for example that

it is convex, a ruled surface, or the surface of a generalized cylinder(see Section 6). Other authors propose

smoothness constraints derived from the fact that the integral of depth around a closed loop in the image is

zero [BR0079, STRA79]. Ikeuchi and Horn [IKEU81] discuss a more direct formulation of a smoothness

condition that they state in terms of the stereographic parameterization of surface orientation. This enables

them to use the bounding contour of an object as a source of boundary values for an iterative computation

which fills in the surface orientation in the interior. Formally, denote the nth iterative approximation to the

value of fj, at image point (i,j) by 1,i with an analogous formula for gej. Letting the local (four point)
P

average at the nth iteration be ,Ikeuchi and Horn derive the following recurrence relation as the basis of

an iterative algorithm [IKI-U8IJ:

fn -n, OR.

Of*

Ilere. R. is the partial derikative of the reflectivity function R in the case of stereographic projection,

aii lont.is io 4, which was ed abome in the characteristic strip method. The rculting algorithm has he:n

tested on it 'aricty of images and works well. In particular, it appears to degrade gracefully its errors ate

imlrodticed to the placeKnent of the light source, the surfce oricntation on the houndary, and the nature (of

the r.lectivilv assumed for the surface. Strong rimpirici devidence is provided that the algoritmni ctinvergei.

a1lth nu i no pri'if is, demonstirated. lio case the K:clutdinug tomout( lnr is, partially iIIoi(ipl'tc. Iknimkhi 111-1 I h 'm
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algorithm still appears to converge, though it is not known at how many points it is necessary to specify the

stereographic parameterization of ihe surface normal.

Bruss IIIRUS811 has recently studied some of the mathematical properties of the image irradiance cqua-

tion. First, she has shown that discontinuous solution surfaces can arise from a continuous image irradiance

equation. It follows that one cannot determine for a continuous image irradiance equation whether or not

there is an edge. The curvature of a surface also cannot be determined in general from its image. As an

example, the image irradiancc equation z2 + y2 = p2 + q2 has two different solution surfaces, one of which

z = zy consists entirely of hyperbolic points, while the other z = I(X2 + y2) consists entirely of elliptic

points. However, Bruss has proved that there is only one solution that is convex. She has also shown that

bounding contours can be determined from the-image only when the image irradiance equation is singular.

Ihis means that the reflectance function It and its first order partial derivatives are continuous, while the

intensity function I is singular in z and/or y. For any given singulai image irradiance equation the points on

the occluding contour can be found by inspection of the intensity function (X, y).

Bniss also studied singular "eikonal" image irradiance equations that are of the form p2 + q2 
=_/(z, V).

If the intensity function l(x,y) vanishes to second order at the singular point, that is to say has the form

I(-, y) - 2 + Y + 'tw + O(1z'1 + IuVl),

then there is exactly one positive locally convex solution surface in the neighhorhood or the singular point.

'Tiis result is applied to show that if there is a clo.,ed bounding contour, the solution surface is unique (up to

translation along the - axis). If either the reflectance function is not p2 -I q2 = (z, y), the intensity function

does not vanish precisely to second order, or there is not a smooth closed hounding contour, there is not a

unique solution surtfcc. The reflectance function p2 +- q2 closely models a number of practical situations such

as imaging with scanning electron microscopes.

Wotdham and Ilor,, Woodham, and Silver have developed a rather dillkriit nethod for computing

,,hape from shading that mav prove verv imporant in practice, esen if it lhcars \,cry little resemblance to the
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processes of human vision [WOOl)81, HORN78b. Suppose that we fix the view (camera) position, and that

we set up two light sources at different known points. Suppose that the intensity levels at any image point

(x, y) in the first and second images are I,(z, y) and 12(z, y). The first of these restricts the surface orientation

at (x, y) to the iso-brightness contour in the reflectance map corresponding to the brightness value computed

from I,(x, y) (figure 36a). Similarly, the surface normal is constrained by the iso-brightncss contour defined

by 12(z, y) (figure 36b), and hence to their intersection (figure 36c). A third light source provides complete

disambiguation. This process has been called photometric stereo, and can be implemented very efficiently as

follows. First, there is a calibration phase in which an object whose surface shape is known, such as a sphere,

is illuminated in turn by the set of light sources and imaged. This generates a set of n-tuples of intensity

values (n is the number of light sources), each of which is associated with a known local surface orientation

on the known calibration object. The surface orientation distribution of an unknown object can then be

comptcd by using the n-tuples of intensity values at each corresponding image point as a lookup key into a

table. lo keep the storage requirements of the algorithm within bounds, the intensity values are quantized.

One current implementation quantizes intensity to ten values in each of three measurements. Intermediate

intensity triples are handled by interpolation from the nearest entries in the table. The method, which has been

implemented by Silver, is fast and remarkably accurate [SILV80]. Figure 37 shows the reconstruction of an

egg after a calibration phase using a sphere. Figure 38 is the superposition of a cross section of the known

surface onto one computed by photometnic stereo. Photometric stereo has been extended to handle objects

with specularities by Ikeuchi IIK'U8I], and has recently been applied to the industrial problem of bin-picking

IBIRK8I].

Opli'lfl/ow

Ii Section 3..1. we siirsc) cd (ie work of Mklrr and his group baIsd on die detection of the important

inicwlily changes in an image. In paricmilar, we ncitioned the recent work of Marr, Ullman, and Riclier

on dlcctiln, (lie direction of ioli ,n of a zero crossing by taking the time differential of AG*I(x, y, 1). We

(oI IIdit' this section witlh a e iif I,"1;.,ion (if the ol: (if lIloin awl Schuiwk 11101 N ,"SL that .r ,s SC



67

Figuire .16. An illustralion (if phOomeIiC seren. Supliose (;I) ie the hiiim eas iured a i c4' - p( ~rxuip (x, y) in ihe first imaveu i% 0.6 mid (bi) in the wcond iII1.Ic the hoim s I(iIsu tine &Sante point
is 0.2. (0 .1 lpcrsitiKm I ite fi rst 1%%o m:.t aiaa IS himis thi at there at 104 nurI two vomio

sa aegiadicints.
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Figure M.t onipuriym or the crnss secakn "I an cpg aind a knob shape' wnililced by photmentric
NI r. I I ~ 'id IiInt%) and the I roe cit% s~etiontf% ext ratted fiout pin rgraphs (dotued lines). (K el)RxxllttI
from I IVxOI
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a method for computing opticalflow by differentiating the brightness distribution in the image with respect

to time. Optical flow is the distribution of velocities of apparent movement caused by anoothly changing

brightness patterns. It has been noted that optical flows encode rich infonnation about a scene and observer

motion, and it has been suggested that this information can be computed from the flow field. This position

is particularly associated with the followers of J. J. Gibson, who firt studied flow fields JGIBS50, GIBS66,

CLOCKO. KOEN75, KOEN76. KOEN77, PRAZgO|. In particular, it has been suggested that optical flow

facilitates object segmentation [NAKA74, CLOCSOJ. computation of the parameters of the observer's own

motion relative to the scene [PRAZ0, LONGBO, and the determination of visible local surface normals

[PRAZ/01.

Ihe work on inlerpreling optical flow has generally assumed that the flow is given, that it is somehow

computed automatically and sufficiently noise-free. "Velocity sensitive neurons" have been postulated to com-

putc the optical flow in animate visual systems INAKA74). Horn and Schunck [HORN8c] have studied the

generation of the optical flow from brightness paaerns that vary smoothly with time. They restrict attention -

to imaging a flat surface with uniform incident illumination, and smoothly varying reflectance. The image

brightness at point (z, Yi) at time ( does not change, and so

d1(, y, 0 -0.
dt

lFxpanding. by the chain rule we find

.A + ,yt + It =0o,

,Nhcrc (u, v) Ns the opoc'al llow( (, ,/). This shows that the component of the flow field in the direction of

the brigliu iis gradient (1,, I,) is

-/,I
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It is not possible to determine the component of the flow field perpcndicular to the intcnity giadient,

that is to say along the iso-brightness contours. In practice, quantization errors and noise imply that :,g is not

exactly zcro. To account for this, an error term E is introduced and defined by:

Eb = 1.U + IYtV- l9.

To compute the component of the flow field along iso-brightncss contours requires an extra constraint.

Horn and Schunck derive a measure of the departure from smoothness of the flow [HORN81c]. Smioothness

can be estimated by the square of the magnitude of the gradient of the optical flow velocity:

E' = (L9U + ( )2 + (,9V)2 + (61.

The estimate of the departure from smoothness and the change in brightness combine in a measure of the

error:

E 2  a 2 +2 E2

Using the calculus of variations, Horn and Schunck eventually derive the iterative computation:

0,+1 = till_ l1ll, u" + IYU" + i]
(a2 + I + 12)V'

tji&+I = V, _ 41ha" + IoU" + It]

(2, + 11 + 12)

Initially, the components (u, v) of optical flow are assumed to be zero everywhere. 'Ie algorithm works

well on synthetic patterns as ligure 39 shows.

3.3 Segmentation

C ~A great dcal of eflhnt continues to be extended on segmentation, a prox:css that is essentially the dual of
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edge finding. Recall that edge finding has three stages. First, significant intensity changes arc detccted and

localized. The feature points are then grouped to form linear segments. Finally, segmcnts arc intcrpreted

as scene events, such as depth, reflectance, and shadow boundaries, as well as discontinuities in surface orien-

Lation (true edges). Analogously, the process of segmentation bcgins by isolating those regions of an image

in which there arc no significant changes of intensity, and adjacent regions arc then grouped, or "merged".

Finally, the regions are interpreted as scene events, typically visible surfaces, shadowed areas, or patches in

which the reflectance is uniform. As in the case of edge finding, the difficult issue is to frame a precise

definition of "significant" so that segmented regions correspond to the perceptual cntitics that are their inter-

pretations.

Some authors [MARR78, page 641 have concluded that segmentation is an ill-defined operation, since

regions do not always correspond to portions of visible surfaces. Certainly, simple schemes for segmentation

produce many u.',eus regions, just as simple approaches to edge finding ascribe significance to spurious

intensity changes. Several authors have pointed out that region finding is no more, and no less, difficult than

edge finding [HARA79, BINF81]. If segmentation and edge finding differ at all, it is with respect to the

descriptions naturally associated with two-dimensional regions and one dimensional segments.

I'Early work on segmentation implicitly modelled an image as a collage of regions that are homogeneous

in intensity and separated by step changes. A slight refinement was to accommodate noise heuristically by

merging across weakest contrast boundaries JIR IC70, BARIR71].

One approach to improving segmentation schemes is to incorporate better models of edge finding. F.ach

of the processes for discovering feature points outlined in section 3.1.1 can he adapted to segmentation.

Haralick IHARAS0, page 621 observes that two pixels are part of the same region if and only if there is no

significant difference between their associated sloped faccts. If every intensity change uncovered by the Man'-

I lildreth theory of edge finding is significant then closed contours If ,ero-crossing,. correspond to regions.

Al) aliernalive appr(%i.h Ito improving seginentdlion is to invoke lomn specific wenmanlic infrirmilion

C cithCr 10 01courage or inhibit the merging (if regions TINI-77, SH I14 l1. Such schicies for sCg entatitm ire
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analogous to the semantically guided edge finders advocated by IBAJC75, BAJC76b. SHIR731.

Horn's work on shape from shading discussed in the previous section implies that there can be significant

variations in intensity within a perceptual surface. In general, only a planar surface produces a region that is

uniform in intensity (ignoring noise). Segmentation on the basis of intensity values is a heuristic consequence

of the early preoccupation .with scenes composed of planar surfaces (see section 2). According to the image

irradiance equation, intensity is uniform within the image of a planar region because the surface orientation is

constant. Ballard [BALL80 suggests that the concept of segmentation is more naturally associated with repre-

sentations based on surfaces: Marr's 21D sketch. Horn's needle map, and Barrow and Tenenbaum's intrinsic

images. As before, segmentation is the dual of discovering significant changes, say of surface orientation or

depth. Such processes await investigation. Ballard proposes that the Hough transform can be generalized for

this purpose [IIAILSO.

Many surfaces have constant texture or color. Color may be perceptually uniform across a surface

even if here is significant variation in intensity. Horn's work IHORN74], based on Land's retinex theory,

embodied the idea of segmentation on the basis of "lightness" for a two-dimensional world of "Mondrians".

Ixtending Iblorn's work to three dimensions would not be trivial. Tomita, Yachida, and Tsuji ('TOM1731 also

experimented with segmentation on the basis of color. Ohlander, Price, and Reddy [OHLA781 experimented

with multi-spcctral descriptions including hue, saturation, and brightness. Brady and Wielinga [IBRAI)781 note

that the Ohlandcr program works well on "patchwork quilt" images that are composed of large regions that

are uniform in one of its nine descriptors. Teicnnbaum and Barrow rTENE77] observe that because it is based

on this heuristic, hc program is easily fooled, especially by regions of repeated texture.

3.4 Texture

lexttirc is a compelling visual cue to the properties of a surface. We can recognize a region of an image

as grass or the foliage of a bush or tree, and often we can do so in a black-white image widout the aid

o)' ((oor. We .a.,il) distingoish velvet, woollcn weaves, herring bone, and rafliu. lclbbled path. sanid out

I i I I I I I I I
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from the surrounding soil. It seems that most terrain classification from satellite images is based on texture

discrimination and recognition.

Hlaralick [HARA79] points out that although hundreds of articles have been written on the subject of

computer recognition and description of texture (mostly from the standpoint of pattern recognition), few

precise definitions of texture have been given. As a result, texture discrimination techniques are largely ad

hoc. Most accounts of texture are based on the idea that its distinguishing characteristic is regularity of the

"primitive" elements, called lexels, of which the texture is composed, and of the spatial relationships between

tcxels. If there is wide variation in the size of individual blades of grass, or if the blades arc sparsely and non-

uniformly distributed in the image, the grassy texture appears "ragged". In general, the strength of a texture is

determined by the regularity of its texcls and regularity in the spatial relationships between the texcls. Zucker

proposes that ideal textures are completely regular and can be modelled by regular two-dimensional graphs

IZUCK76]. He suggests that naturally occurring textures are distortons of ideal textures.

We prefer a rather different view of texture, based on an idea of what purpose texture perception

serves. A grassy lawn, the foliage of a tree, and a pebbled path are all perceived as surfaces. Microscopic

variations in a surface determine its reflectance tHORN79, while large scale variations in a surface determine

its topography. The processes of determining shape from stereo, contour, texture, and motion are discussed

in section 4. Mostly they operate on isolated edges and regions found by one of the processes discussed in

sections 3.1 and 3.3. We suggest that texture refers to surface variations intermediate between microscopic

reflectance changes and topographical changes made explicit by edge finding and segmentation. It follows that

descriptions of texture require the isolation of macroscopic surface facets and the determination of t e spatial

relationships between such facets. In order to be perceived as a single surface, surface lcets (texels) that are

physically close should have similar descriptions. Regularity is the physical basis for grouping facets as a single

surface. Surface variations arc labelled reflectance, texture, or topographic depending upon die resolution at

which they are viewed. (See [MAI.F77] for similar remarks).

L" 'lhc twin themes of statistics and stncture non through most of the literature on texture. We connmented

Pow-j
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above that regularity is central to texture. Inevitabl, regularity has been modelled statistically; for example,

the distribution of slopes of individual blades of ass has a strong peak and small variance. Statistics has

been applied more or less uncritically to texture. Maleson, Brown and Feldnian [MALE77] quip that "the

problem with statistical analysis is that if an inappropriate set of statistical measures is used, the final results

are meaningless. For this reason, it is important to base statistiis on a reasonable model of the phenomena to

be measured." One approach to a 'reasonable model' is to apply statistical analysis only to texels that carry

significant information about surface structure, in particular, those isolated by edge finding and segmentation.

Haralick IHARA79I has presented a good survey of purely statistical approaches to texture. Simple ideas

such as computing autocorrelation functions perform relatively poorly [WESK761. Bajcsy IBAJC73, BAJC761

model regularity by periodicity as determined from features of the polar form P(r, 0) of the Fourier transform

of subimages. Combining all r to show the dependence on #, peaks in P,(O) give evidence of directional

textures such as grass. If there are no peaks in P,(#), P#(r) is investigated -for peaks that give evidence of

blob-like textures. Textures need to be strongly periodic to be found by the method. A better model was

introduced by Julesz IJULF62] and refined by several authors, including Rosenfeld and Troy [ROSE70] and

I laralick ItIARA7 11. The co-occurrence P(i, j, d) qecifies the relative frequencies with which two grey levcls

i and j occur separated by a distance d. Haralick and Bosey tIIARA73] computed a number of features from

co-occurrence matrices and used them to classify terain from satellite iagcs, achieving success rates of over

80%. Julesz IJUI.E7II conjectured that textures can be discriminated by non-attentive vision if and only if

they differ in their second order statistics (essentially their co-occurrence matrices). As originally firmulated,

co-occurrcnce matrices specify the relative'i'requencies of individual grey levels. I lorn's work on shape from

shading shows how much infi)niation is confounded in a single grey leveL Only when surfaces are csscntially

plaar, for example satellite imagery, is grey level a reliable basis for aggregation into regions corresponding

to s ir iccs. I lralick IIIARA79, page 7871 notes that while co-occurrence based on grey levels captures spatial

iclatin-nhips it does not capturc shape aspects anti hence does not work well fir textures conposed of large-

.ire.I Icxlds. In !;ho ,. individual pixel5 are pox)r descriptors of surface facets.

. , :.. :
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Co-occurrence is not restricted to grey levels, however. Maleson, Brown, and Feldman [MAIE771

propose segmented regions as texels. They suggest region descriptors that arc insensitive to scale, such as

the orientation of the major axis and eccentricity of the best fitting ellipse to a region. Details of the perfor-

mance of a system based on this technique on a range of textures has ye to be published. Marr [MARR76I

suggests that texture discrimination based on co-occurrence matrices could be accounted for by discrimination

on ordinary statistics applied to the primal sketch. The scheme was not implemented, nor were descriptions

proposed for texture. To this end, the main advance has been due to Vilnrotter, Nevada, and Price [V 11.N8 I.

Their work is based on the Nevatia and Babu edge finder (see section 3.1). Textures are detected from edge

repetition arrays that specify the co-occurrence of edges in a particular direction at a particular spacing. Once

detected, texels are described in terms of their average size and intensity. Spatial organization is found by

relating texels in different directions. Figures 40 and 41 show the results computed by the system for raffia and

brick textures.
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Figure 40. a. image or raffia. b. Sample of output from analysis of edge repetition arrays.
abstract representation of the lexEls found in ihe raffia image. d. Reconstruction of the rf
image using the absract texels (Reproduced from (VILN81, figures 1-41

. . .



79
4"

Figure 41. a. Two images of brickwork. b. illustration of abstract primitives found in the imagesof a. c. illustration of the spatial organization found in the textures in a. (Reproduced from
(Viln8I figures 6,8.91

.. .......................
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4. Determining shape from the primal sketch

4.1. Shape from stereo

lhc slight disparities in the images received by the left and right eyes enable humans to determine the

shape and relative depth of visible surfaces. The importance of automating stereo, and the difficulty of the

problem, is well stated in a recent overview of Defense Mapping Agency applications IMA HOBl].

lcre have been several attempts to develop a computational theory of binocular stereopsis since

Julesz's demonstrations in the early 1960's that it is possible to fuse images stereoscopically without extensive

monocular processing. Julesz [JUI.I71] presented substantial experimental evidence regarding binocular fu-

sion of randem dot stereograms, a perceptual device that he originated(see figure 42). T7he essence of stereo

vision is the matching of descriptions computed from the images presented to the left and right eyes. le

Jules,. demonstrations argue that the descriptions to be matched are available at an early stage of visual

processing. Two candidate descriptions considered for matching to date are the image (area correlation), and a

representation or intensity changes (edge based stereo).

Jules/ conjectured that stereo is a local parallel process, and a number of algorithms have been designed

with this conjecture in mind. "lc first of these is due to I)cv [DEV75], closely followed by Marr and Poggio

IMARR76b, MARR76c]. Marr and Poggio call their algorithm "cooperative" by analogy with boundary value

computations in physics. The algorithm could equally well be called a relaxation process [DAVi81]. Marr

IMARR781 notes a number of difficulties with such algorithms as a theory of human stereo vision, ninecly

human tolerance or the dcfocussing of one image, and the apparent ubiquity of vergence movements of the

eyes as tw) images are fu.ed. Perhaps more important are the so-called hysteresis efects in which images

arc matched only after a delay, or remain I'uwsd whcn Ihcy are pulled apart by an amount greater thun is

apparently possible for matchine. Marr and Poggio IIJARR79hl argue tIat while hyseres:is elfects stiggct

cooperaivity. the ctfect can alo he achieved by p(Pstulating a dynamic meniory in which intermcdiat e resiflts

ofser'o pr(Kcsing can be stored.
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Figure 42. A random dot stereogram devized by [JULE71]. First, an image is produced for the
left eye, composed of random dots. The view from the right image is determined by translating
each dot in the random dot image leftwards by an amount that depends on the relative distance
of the corresponding point in a conceptual bcene. Some dots are occluded as a result. Other image
points that could not be seen by the left eye are now visible in the right eyc. Such points are
randomly filled by new dots.

Most work on area correlation stereo [HANN74, QUAM71, FIENJ)781 operates on a succession of small

windows (typically 10 by 10) from one image. For each window in the left image, a search is conducted

for that window in the right image that optimizes a suitable correlation relation between the grey levels in

the two windows. Area corrclation has proven to be particularly effective in textured or smoothly shaded

areas. It has supported terrain following autotmatic guidance systems, and soine automatic mapping systems

where the goal is to generate a digital terrain model associating a height with each map point imaged.

Area corrclation implicitly assumes that ie left and right images difler only ini viewpoint, that is they only

difler photometrically. As a result, area correlation pellwmns poorly near surrlce di.continuities where this

pholmcittric assumption is false. Conversely, edge based stereo assumes that the invariance between the IAf
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Figure 43. The zero crowinp located in the four chanud of the Man-Hridre theory for the
random dot image own in a. (Reproduced fom Grimmon'm tthcmiq book IGRIMS1D.

and right images is geometric. fBaker and Blinford [BAKE8I] observe that in general the geometric assumption

implicit in edge based stereo is more realistic than the photometric assumption implicit in area correlation. A

further shortcoming of current area correlation techniques is that their accuracy is limited to a fraction of the

window size (typically 5 picture elements). Edges can normally be localized with subpixcl accuracy [MACV81,

MA11R179a].

Implicit in the above remarks abouc the suitability of area correlation for stereo matching of textured

.1rc. is i modhl of cxlure based mn grey levels. We fiund etrlier (Section 3.4) that texture describes surfiace

IIIL r4,%Ir( tlry" with lexels corrcilondiig to surface faocets. 'lic ctension of til approaches to edge hased

NICICI t,, lenscly tcx.ired areas awaits f'trther wark on cdgc ald region based JKCou0ts Of texture.

Vdvc ha .d stereo is strong where area correlation is weak, and ,conversely. An additionial advantage of

J,. h..'d a, l,, I-, it% ptL'ntI.dI'v prc:il r elliciency. as thile are cmsidcraibly fl er edges ihn, givy level..
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Stereo rests upon, and providcs a stiff test for, any account of edge finding. In section 3.1.1 we discussed a

number of approaches to edge finding. Marr and Hildreth's approach to detecting feature points has been ap-

plied to stereo by Marr and Poggio [MARR79b]. The left and right images are convolved with AG operators

as described in 3.1.1. Matching takes place between the paired sets of zero crossings. Figure 21 showed the

image of a coffee jar sprayed with spots of paint to yield a Julesz-like random dot stereogram from a real scene,

and figure 24 showed the zero crossings produced by each of the four channels proposed by the Marr-tlildreth

theory. Figure 43 shows the zero crossings produced in each of the four channels for the random dot image

shown in figure 43a. In both figures 24 and 43, it is evident that it is considerably more difficult to establish

an optimal match between the output of the fine channel from the left and right images than between the out-

puts of the coarse channel. Exploiting this observation, matching proceeds from the coarsest channel, which

makes explicit gross detail and establishes a rough correspondence, down to the finest resolution channel.

h'his coarse-to-fine strategy, in which a rough plan is used to narrow the search space prior to more detailed

processing, is a basic idea in artificial intelligence. The application of a coarse-to-fine strategy like that In the

Marr-Poggio theory of stereo seems to have been used by Moravec [MORA80] in a system constructed at

Stanford. Note that the coarse-to-fine strategy may have to be modified for closely spaced edges that occur

with textured surfaces.

Once the match between the zero crossings in the two images has been established for the four channels,

one can compute the angular disparities (or even distances) to matched zero crossings, IGRIM811 gives details.

Figures 44 and 45 show the disparity values computed for the coffee jar and the random dot stereogram shown

in figure 42. A disparity value is recorded only where zero crossings from the two eyes are matched, and

so) te disparity map is often discrete. Since we mostly perceive the world as composed of smooth suia-es,

it is necessary to consider possible interpolation processes for smoothly completing the surrace orientation

map froim the discrete set of disparity values. "lI'is is a general problen and is discussed in the next section.

( ii, sn's reconslruclion pr iwevs comnptiles the shape shown in fi[lre -16. Gi isc m \ ii i iil'ts ii.inim, of ie

R ,-iMl'I'io sielto tlcoly (lenonsl.itt" ill of Jiflcsz's exl erinelltdl findings. It has also lict'wcn .11plit'd it) .1



Figure 44. The disparity map computed from th ouput or the saw wamd fer € the coffee jpr.
(Reproduced firm Grinwon's ouhconming bok JORI BI

small number of stereo palr of natural imagel.

In section 3.1 we charactcrized edge finding as having three su ssive stague: determining feature points,

grouping them on the basis of their attributes, and intcrprcting them as scene events. The Marr-Poggio theory

matches feature point descriptions on the basis of the position and sign of the icro crossing, before the feature

points are grouped into linear segments. Recent psychophysical findinp of Mlayhew and Frisby [MAYI18l

seem to indicate that it is necessary to match richer dewcriptitns than zero crossings. Baker and IBinford

IliAK I8 I I and Arnold JAR NO781 propu(se that ambiguities can be resolved more efficiently and successfully

on the basis of the richer descriptions a.sociated with points on linear segments. Baker and Binford [IIAKF" 11

hiiatch points at various sales using the pos)ition, contrast, and sloe of the .egment in the image, and the

inlensilie (in both sides of the intet:%ity change. 11ese separate pieces of evidence ire combined by a linear

'cA hCitgii flih1,I11. The optitial matd is linind ahlg hori/onfnl s.1in livns uring a Cast linear programming
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Figure 45. The disparity map computed from the output of the stereo matcher for the random
dot stereogram shown in figure 42. (Reproduced from Grimson's forthcoming book[GRIM81])

technique. Once edges are matched, grey levels are correlated by a similar process. Figure 47 shows the results

computed by lakcr and 1linford's program on an image with both texture and edges. Arnold [ARNO781 also

filters putative matches according to the position, slope, and contrast of edge segmenls. The edge segments

are found using lueckel's surface fitting technique. Arnold claims that this is the program's main deficiency.

It is interesting to speculate how the Baker and Binford or Arnold algorithm might perform if they had die

Marr-flildreth zero crossing data to work on. Alternati'ely, it is interesting ito ask how the richer descriptions

proposed by Baker and Binford, Arnold, and Mayhew and Frishy could he incorporated into tie Marr-Poggio

theory.

All of the programs discussed in this .section. except Arnold's. assume that the left and right images have

been icclified prior to stereo matching. 'h'lait is, thcy as.,inc that the ilimages have been iotated. tranislated,

L rand c1d so that corresponding feature points can he found on the siame horizoltal scan line. Arnold's
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Figure 47. Example results of Baker and Binford's stereo program, a. Stereo pair of images of
natural terrain. b. The edges found in the images by a simple differencing operation. c. Illustration
of disparities computed for the images. (Reproduced from [BAKE81, figures 10.11, and 17.)

program relies upon a rectification procedure developed by Moravec and Gennery [MORA79, GENN79]. In

this procedure, "interesting" points such as corners are found in both images, and an optimal match is found.

hc tentative match is refined using a high resolution area correlator. A camera model solver computes the

direction of the stereo axis, the relative rotation, scale change, and lateral translation between the left and right

views. The ground plane is also determined. .ucas and Kanade have recently explored the application of a

Newton-Raphson like technique to solve for the camera paramctcrs[l.UCA8 11. Rectification remains a difficult

open problem.

4.2 Shape fromn contour

Witkin \\I'rK811 has make a start on %fliat sccns to be a promising approach to compoting shape from

I: a primal skctch. I ls work concerns the peiccived slant and tilt of a line drawing lying in a plane, such is the

,L
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map outline shown in figure 48. Witkin's approach relies on making the image forming process explicit, and

using it to derive a probability density function. Assume that the axes in thie image and in the planar scene are

aligned, and denote the tangent direction measured in the Image by a* anid the tangent at the corresponding

point in the scene by P3. Image foreshortening gives the relation

tanj

where r is the tilt and a is the slant of the planar scene. A collection of measurements of a* taken throughout

the imaige define a distribution of tangent directions. If we hypothesize particular values for a and 'r, the above

relation establishes a distribution for P3. Given an expected distribution for (#,a, 'r), the likelihood or any

observed distribution of a can be evaluated. Witkin shows that the probability density function of (P, a, r) is

0Ij.It turns out that the relative likelihood of (o,, ) given a set A * of measurements of a* is

W12 ti0CO5O

'.s- ncoa2 a i- r) 4. in2(ao - v)co# 2v

'he value Of (a, -r) for which this estimator assumes a maximum is the maximum likelihood estimate for

surface orientation. Figure 49 shows thc results of this procedure applied to a variety of shapes, and compares

it ro the tilt as estimiated by humans. Witkin found that tilt could be estimated considerably more accurately

than slant, a result he and Stevens [STEV8OJ established independently. In further work, Wltkin assumes that

%urflaccs are locally planar and applies a similar analysis to compute local surface orientation [WITK8IJ.

4.3 Shape from texture

Wf the mv(diiles which seemn to bridge the gaip between dhe primial sketch and die stirfacc orientation inap,

none~ las it-eivcd quite its niticli atntion rron, psychologists as tlie computaiomi (if surface orictitationl and

depth lroin iexture gradients. Elver since Gihsoni 10I15S501 drew attention to their importance for computing

dlith lilgure S11). Iiic have been i nmajo r ncecrn of hisi Iiillowcft. Stevens JST[VK0I notes the sinmplificamtimns
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Figoore 48. A g~raphic contour shown at vaflonis (IrienilioIns, wiltl div dcnilI Makt~in tohaincd
a( 111.1 orientatIion1. Ilic dciisii V functiion i-, plotte~d by iso-doenity corin;u ni, %Olh (a, r) utewmen~d

in p lai lipin: o i 6 %,o b ditan e t) Ilc o igi , r Iq lic il~e. lle Ala ll m mil iii- r ak1
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Figure 50. A texture gradient in a natural scene. (Reproduced from [GIBS5OJ

assumed by most published analyses of texture gradients in the psychological literature. Typically, a horizontal

ground plane is assumed that stretches into the far distance. Stevens proposes a two step computation: (1)

isolate "characteristic directions" in which there is no depth change, and (2) computc depth from thc slant and

tilt representation of surface oricntation. The idea has not bcen implemented. It assumes that primitive texets

can be computed for natural images with sufficiently precise descriptions that the characteristic directions

can be computed accurately. Ilajcsy and Licbermian [IIAJC76a] base the compta~tion of textitrc gradients on

llajcsy's applicaton of the Foturier power spectrum to describing tcxttirc (see section 3.4) [BIAJC73I. All of the

otr methods for computing texture discussed in section 3.4 couild he adapted to the determination of texture

gradients.

Kender IKVNI)8OI has considercd the conmputaition of ,hape from textre as an istance of a general

mumbtodology that ylields "shape fromn" algoi ithnis fromn a variety of image obi,vables. The pem~.ni plan of
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Kcndcr's approach has three parts:

* Primitive texels are extractcd from the image. Kender assumes that texels are the image of planar

surface facets, but he offers no guidance for computing them.

9 Rich texcl is assigned a set of possible scene parameters. This is the core of the approach. He introduces

a set of normalized texture property maps (NTPM) that generalize, for example, Horn's reflectance map

(section 3.2).

* texels that are assumed to arise from neighboring surface facets in three space compare the constraints
U

on their sets of possible parameters, casting out those that are inconsistent on some appropriate grounds of

smoothness. As Kender points out, this step is similar to relaxation processing as advocated by Davis and

Rosenfeld JDAV181].

Ballard's parameter networks bear many similarities to Kcndcr's scheme [BAI..811. Where Kcridcr

prefers intersecting constraints. Ballard prefers adding them in accumulator arrays as part of his advocacy of

the gcncrali.ed Hough transform.

Kendcr's NTPMs have four associated choices.

* Since the goal of a "shape from" algorithm is a precise description of surface shape, an appropriate

paranieteri7ation of surface orientation needs to be chosen. Popular choices are gradient spice (section 2,

section 3.2), the Gaussian sphere [HORN82], and stereographic space [IKF.U8Il (see section 3.2). In the

example presented below, we choose gradient space.

9 I he imaging geometry is a key component of texture. gradients. The essential choice is between

perspectivc and parallel (orthographic) projection. Kender shows that while the mathematics of peipcctie

l)rpjcLtiom i more complex. the constrailnt it offiers is considerably tighter. For mathemnatical simplicity, we

Cli|,,st. It.lt' projection.

* ssNtming that texels lave .mcht,' heeni made available, several exure mea.ures citn , compluted

i I "I 'l.Icdl Io, possible 'Cle tIC'.ninems. 11optliar choices are txcl Icngth (for ex.i mpk, the Ic.Imtih of' Il1w major

,, 4 , , k1 .0C i ballls ,l,\' l ill hllt.lm 50), file -,Ipt ill flw iimimage I11 'mm dire 'ti,,n a610'iaI ,I i1i Ii '
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Fipre 51. A texture with an unusual relationship between facets and the underlying planar
surface. (Reproduced from [KEND80, figure 3.41

tcxcl (compare IMALE77], the angle in the image between two directions associated with the tcxel (compare

Kanade's work on skew symmetry discussed in section 2 [KINI)80]), or dot or edge density (compare

[ROSE70, ROSE7 lJ. We consider length and slope in the example below.

0 Finally, the way in which the facet that projects to the texel is connected to the underlying suirface has

to he assumed. In figure 51 the facets can be interpreted as lying in the plane or protruding from it.

As an example of Kcnder's approach, consider the abstract texture shown in figure 52. We shall make

the following choices: gradient space representation of surface orientation, parallel projection, and length

and image slope of texels. We ,hall assume that the texels all lie in a planar surface and form two mutually

orihogonal sets. We shall show, that the orientation of the surface is completely dctermined.

We first consider the NIII coi responding to the length of a texel. Figure 53 shows a lexcl of length L

• and ,hlope a in the imap. Suppose that one end of tie texel is at the imagc origin and that the Loariesponding
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Pigure 52. An abstract texture. The horizontal and texcls slanted at 45P are assumed to have the
same length in the image and in the scene. i is further asumed that the horizontal texels are
orthogonal to the slanted texels in the scene. (Reproduced from [KENISO, figure 3.91

sccne point is (0, 0, d). Suppose that the deprojection of the other end of the texcl is (L coac, Lain a, e).

Since die deprojcction of the texcl lies in the plane whose normal is (p, q, -1), it follows that e - d =

pl, cos a + qL sin a. Thc length of the deprojected texel is therefore

L, - L[I + (pcoao + qsin a)j.

Applying this to the texture shown in figure 52 we have Lo = LI, that is

(p -+ q)(-+ p")=( + ,,-

o r, L
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Figure 53. Length and slope of a texel in the image.

p2 _ q2 - 2pq =O.

We now consider the NIPM corresponding to image slope a of the texcl shown in figure 53. Consider

a scene-based coordinate system defined by the normal to the planar facet, the line of steepest descent of

the ficet, and a direction chosen to make a right handed system. 'lhC gradient line has direclion ratios

(p, q, p2 + q'). The normal to the plane is n = (p, q, -1), and so the tJhird direction of the scene-

based coordinate sy tem is the cross product of th,!se two, namely m - (q, -- p, 0). Consider the deprojection

1) (cos a, sin a, d) of the texel shown in figure 53. Kender [K I"N I )O0, page 1141 defines the slope of v to he

f. wh're

I. tariff v.1
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If wc assume that ji lics in the plane, so that I - = 0, we find

tano = qcooa - punapcos a +qsinaXl.+p2 "I2)"

Applying this to the texture shown in figure 52, the slope of the horizontal texels/ o is given by

q
tan #a q~

Similarly, the slope i3| of the slanted texels is given by

tani q-p
(q + p)(1 +p 2 + q2 )

If we assume that the texels all lie in the plane and that they form two orthogonal sets, we have

tanpo, tanpf -I.

Solving. we get another quadratic in p and q. When combined with the length constraint we can solve up

to Neck'r reversal. Kender points out that if perspective pn)jcction is assumed the sense of the Necker reversal

is often resolved.

4.4 Shape from motion

Just as the ideas about shape from shading and edge detection described in Sections 3.1 and 3.2 lead

naturally to progress on motion perception, so do the developments surrounding the primal sketch. The first

treatment of this issue is due to Ullman lJI.' I.M78L, who considercd the problem of establishing a correspon-

dcwe lwcin the primal sket hes in two suCcessivC image rrames. Ullnan also stidied the problcm of'

cm4Ipuling the structure of a rigid body froin the correspondences of a small tiinlvr of points in a iunbr of

vico %. I 1mrilm out111h1t renarkably fcw ofcah ae required t, cor1put! rigid ihrcc-ditnensionial striwllre. II

~ * .d.
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modelling normal vision of course, sparsity of infonnation is manifestly not the problcm! A different way to

view such results is that they give information about how local an algorithm to dctcremine three-dimensional

structure can be. More recently, Webb [WE IBg0, WIEBBl8I, hVoffman and Flinchbaugh [-0FF101, and

Rashid [RASH80 have considered the problem of reconstructing motion in depth from the output of the

correspondence computation. Flinchbaugh and Chandrasckharan [FLIN81l coin the term "dynamic primal

sketch" to describe the representation they compute, since it associates an image velocity measure with every

primal sketch element. Flinchbaugh and Chandrasekaran [FLIN81] have proposed a number of grouping

primitives to apply to the dynamic primal sketch, analogous to those discussed above for the (static) primal

sketch.

S. Modules that operate on representations of surface shape

Many of the visual processes discussed in uic previous sections compute the shape of a visible surfce by

finding the local surface orientation everywhere within its boundaries. This includes the work of Horn and

his colleagues on shape from shading (Section 3.2), the computation of shape from contour investigated by

Witkin (section 4.2), and the interpretation of optical flow [PRAZ80, CLOC80]. On the other hand, shape

from stereo yields disparity only at the discrete set of zero crossings. A change of coordinates can convert

the angular disparities to depths, but to compute the local surface normal everywhere on the visible surfice it

is necessary to interpolate a smooth surface from the discrete set of given points. We shall discuss this issue

below. Binocular stereo is not the only module that generates an incomplete surface orientation map. Shape

from texture (section 4.3) computations yield (constrained) surface orientations only at texture points, which

may be more or less densely distributed. Stevens IS ItV81] considers the interpretation of surface contours,

and finds that they strongly constrain the perception of the underlying surlace. Iorn IlIORNS21 and Marr

IMA RI78aI suggest dhat in addition to local surface orientation, it is advantageous to make explicit the (liscon-

tinuitc', in surface oricttalion and depth. It is not el clear how surface ini mal should be paiamiteriied, nor

, how ai imrately their v.alucs should he represented. Moreover, substanlial advantages ar' likely it accrue from



atiaching texture and color descriptors to visible surfaces, but the details are as yet unclear.

One might also consider maintaining separate representations corresponding to the four (or more) chan-

nels defined in the Marr-Hildreth theory of edge detection (described In Section 3.1.1 and used in the Marr-

Poggio theory of stereo). This would enable the visible surfaces t a scene to be represented at different scales.

It is clear that surface information needs to be made explicit at different levels of resolution: a pebbled path

may be considered approximately planar by a human who Is walking along IL On the other hand, an ant

or person on roller skates may find the same path extremely difficult to navigate; in such cases the path is

unlikely to be perceived as planar. As this example indicates, the level of resolution of a representation is

determined largely by the process operating upon the representation, and there has been little investigation of

such processes to date. Hinton shows that different representations of the same volume and set of surfaces

can have a significant influence on the difficulty of perceptual tasks [HINT791. Similarly, we have seen that

grouping processes play an important role at several ses of visual processin, from edge finding to the inter-
0,

pretation of texture. Such processes have not yet been extensively investigated at the level of representations of

surface orientations.

Perhaps the most important operation performed by any vision system is recognition. Representations

below the level of surfaces are generally too unstructured to support recognition. One notable exception to this

i'i recognition of surface type from texture information. Interestngly, we suggested in section 3.4 that texture

is a form of surface representation. It has been argued that the surface orientation map is also inappropriate,

in essence because it is viewer centered. Mart IMARR78a notes that we arc capable of recognizing objects

firom a wide variety of views. against a wide variety of backgrounds. To achieve this. he suggests a repre-

sceotilion which mIlakes explicit the threc dimensional ("volumetric") nature of objects. We shall consider such

represcntatiu % in the next ScLtion. For the moment we need only note that it is highly non-tri ial to extract

%olulnctric reptcsentations from a surflce b3.ed representation, and so practical advantages might accrue from

rcoEgnilion based on the surfa'e oi icntation map.

'I le c.Ae *liaium surface hacd models of objecti for recognifion is cssetllilly in argumnnt aI,3lIist miil-
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tiple views. Horn tHORN82J notes that irrespective of the force of the argument as regards gencral human

vision, surface based models may still support important practical applications. For example, because of the

limitations imposed by methods of manufacture, many industrial parts only assume a small number of stable

configurations. Symmetry further reduces the number of substantially different views of a part. Since there arc

typically only a small number of parts in a parts mix, one can store a representation computed from the surface

orientation map corresponding to each different view of a part in each configuration. Iorn further suggests

that it may be sufficient to throw away positional information and model an object by the distribution of its

surface normals on the Gaussian sphere [HORN82]. Figure 54 illustrates the idea.

Perhaps the most difficult problem which sighted people constantly rely on their vision systems to help

them to solve is the perception or planning of movements through cluttered space. 'The experience of

programming robots to avoid obstacles and discover a satisfactory trajectory between two positions reveals

the staggering difficulty of the geometric problems involved, problems which the human visual system solves

effortlessly. Space, considered as an object, typically occupies a volume and consists of a surface whose I
descriptions push current representational frameworks to their limits, if not far beyond them. A solid start has

been made on the problems of spatial planning by IAxzano-Perez [L.OZA8 I], who represents the set of possible

configurations which an object can assume in the presence of obstacles and presents efficient algorithms for

computing near optimal trajectories. A further important application lies in making precise the rather vague

notion of cognitive map. It is usually supposed [LYNC60] that this only refers to object representations.

Actually it seems that we have quite considerable navigational processes which operate on the surface orienta-

tion map.

We conclude this section with a discussion of the problem of interpolating a smooth surface from a

discrete set of points, such as the disparity map computed by Grimson's implementation of the Marr-Pogglo

theory of stereo (section 4.1). One approach might be to apply the work on Coons patches, II/ier surfa-es,

and Ferguson surfaces developed fir work in computer aided design (CA)) and computer aided imanufacture

C (CA NI) IIAUX791. It is however worth askimng whether the interpolated %uriliace can be constra',ed by what we
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know about human vision, by isolating constraints that have perhaps not figured largely in the development of

CAI)/CAM. Essentially, two such constraints have been uncovered, and arc currently receiving attention.

The first was introduced by Grimson [GRIM81]. Suppose that Dci,.,a is the disparity map from which

we are to interpolate a smooth surface S. Horn's work on image foniation tells us how to construct the image

Im(S), and this enables us to compute the set of zero crossings, and hence predict a disparity map D,lredid.

The actual and predicted disparity maps should agree everywhere, Actually, one does not explicitly construct

the image of the interpolated surface and the predicted disparity map. Rather, it is used implicitly in deriving

a number of theorems which constrain the surface S. Grimson has coined a suggestive slogan for this analysis:

no information is infonnafion, since the absence of an initial value at the point (z, Vj) in the actual disparity map

means that the gradient of the interpolated surface S cannot change too rapidly there.

The second constraint is based on the idea that the human visual system constructs the most conservative

solution consistent with the data. Figure 55 is reproduced from fBARR8Ib], and shows a set of possible space

curves, all of which produce an elliptical image. Significantly, we are unaware of most such possibilities, espe-

cially those that are discontinuous. We are able to interpolate smooth curves and surfaces without involving

rich semantics. It also seems that the shape of the boundary plays the most significant role in determining

the interpolated surface (see for example figure 56, which is reproduced from [BARR81h]. Taken together,

these ideas suggest that the interpolation process can be modelled in terms of the calculus of variations (see for

example [COUR37, volume l.

Ibe idea is to choose an appropriate "performance index'. P and define the interpolated surface to be

that which minimizes the integral of P subject to the boundary constraints. Ibis idea has been explored by

a number of authors. Unlike the ordlnary differential calculus, it is not generally the case that a minimal

surface cxists, even for "plausible" perfirmance indices. For example, it is not clear that there is a unique

surface that minimizes the ian curvature. Grimson [GRIMl1I notes that tile existence of

a minimiing surface can be frmally guaranteed if the performance index .atifics the technical condilion of

Iing a seminrin. lie suggests the quadratic varialion, which is defined to b fl, + 2f,, I-f,,,. a,,d shows

'1
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how to construct the iteration operator shown in figure 57. The square Laplacian + f u 2 also satisfies the

seminorm condition. Brady and Horn [BRAD81b] show that any quadratic form in the second derivatives f'2,,

,-,, and f'., is a seminorm and leads to a unique minimal surface. They further show that the rotationally sym-

metric performance indices form a vector space spanned by the quadratic variation and the square Laplacian.

Since both operators satisfy. the same Eulcr equation a 2f = 0, they cannot be distinguished away from given

boundary points. Brady and Horn apply the statics of a thin plate to show that the quadratic variation provides

the tighter constraint. Grimson notes that the null space of the quadratic variation is larger than that of the

square ILaplacian, containing ror example the function f(z, y) = zy (GRIM81 . tie has worked out several

examples showing that the quadratic variation leads to surfaces that accord better with human intuition. Brady

and Grinison (forthcoming) use these ideas about surface interpolation to propose that subjective contours

arise from surface perception.

Barrow and Tencnbaum (BARR81b] observe that in order to interpolate the circular cross sction of a

cylinder and sphere it is sufficient to assume that the curvature varies linearly in the image. They suggest that

in general one should choose a linear expression for the curvature to minimize the least squares error. Brady,

Grinison. and I.angridge (BRA )80b] use an approximation to the one dimensional quadratic variation 4. to

argue that suhjectivc contours arc cuhics. The exact minimal integral curvature curve has recently been found

hy I lon (I IORNSbl.

6. Vivei point independent representat ions of objects

The %rf;ixc based repiesentations discussed in the previous section are different for each particular view-

i)Oilil. I :thi illl iiII of each viewer in a ,ccne defines a coordinate frame in terms or which the points that

aic %iilc Irom that viewpoint can he describcd. Oilier coordinate frames are naturally associated %Jith the

objc.l-,.mid %tirri,;' iii a s .nc. and it is often more conv enient to describe rati,.e pm,.iiions and iot cments

iii i io'.c Ii.1% ialater Ilian in the ones lined up with a particular viewpoint. In many secncs there is a natmal

"', l. '1, 1 1 ,111di11,11c f.allic t,,at is ihlTiivridvnt if any icwpoini. l'o e ( , 1i,', ,I ,filp. ile 4'r -,hip h, .1
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C * ~Figore 5S. An cIliI'Iki, image. and wrnc of theaince curves that might have genermied it.
(Reprhix~twu riNi IIIARR31b. figure 3-2J
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Figure 57. The surface interpolation operaltor derived by Grimson from minimizing quadratic
vaiiation.

associatcd frame defined by its bow, stern, starboard, port, up, and down; rotations about those axes specify

die yaw, roll, and pitch. A firntball field or a room has a natural frame defined by the sidelines or walls and by

the gravitational vertical.

C Pointsm car --, reorcsci, in hom(ocncoutis coordinates, for example, anId fratic transfoirmations by 4 x 4

,natrices that consist of a tranglation, a rota(ion, and a scale factor. This approach has proved valuable in

.. .'I . . .. . . ' ,"' ,- .. . .. .- ,. .T . . .
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computer graphics [CARl78] and robotics [PAUL79]. Rotations can also be described as quaternions with a

saving of storage [I'AYL79, BR0080]. Frames can specify the transformation to scene coordinates, and hence

by composition relate different viewpoints. Brooks and Binford [BROO80] note that one important use of

intcr-rclating frames by composition is to make afflixment relations expliciL The coordinate frame local to an

airplane needs to be related to that defined by the runway on which it stands. The programming language AL

[IFINK74 was the first to provide a mechanism for the automatic maintenance of affixment relations.

Most objects are composed of connected parts, each of which can be described in its own local frame. A

person has two arms, each of which is further subdivided into an upper arm, a forearm, and a hand. Iike any

structured representation, the important issues concern the choice of "primitives" and the means by which one

part of a representation is related to another. Consider the latter issue first Work in Robotics has adopted

the lartenberg-Denavit notation for kinematic chains to describe the geometric inter-relationships between

successive links of an arm, a leg, or the several legs of a mobile robot [PAUI.79]. Marr and Nishihara's

suggestion [M ARR78b] is a special case of this notation.

One approach to primitives is to consider objects to be composed of instances of a small set of prototype

volumes, such as spheres, blocks, and triangular prisms [BRA1731. This approach has been much used in

CAD/CAM. Ibe problem is that even simple objects have a complex description. One might add more

and more primitives, such as truncated cones and pyramids, to reduce this complexity. Ilinrord [BINF71]

suggested another approach that has proved very fruitful. fie introduced a more general class of volumes

called grendiized coes which includes as subclasses the primitive volumes mentioned previously. A general-

i/vd cone describes a volume by sweeping a cross section area along a space curve, called the "spine", while

del0i ming it acii'irding to sonic sweeping rule. Figure 58 is reproduced from 111ROOR I I aid shows a nulmber

,I g''wr.ili/wd cones. Notice that although elongation is the charact ristic properly of genteralized cones, they

,iv l141 ilk( cs,,l'ily cloilg;lttd. Nor do the) rv'quirc a circular cross sction. Neer'ltlcss, i.ncralizud cones

.,re pal.l itly Aell suited to describing objects which have a natural axis. "Ihis ccrtainl) includes growli

.111,tt,, ",. I ,,l'd i,.'Ih 1I (1 0 .I 151 noted thit 0;c'k amph r, ia ,lc ,also well d. I ihd b) ixnerili/ed Cwi',,s. lite

A,, mm m i~ i i mi a m i i m i m mm imiI|i • H
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spine being a result of the process of manufacture on the potters wheel. Similar considerations apply to objects

turned on a lathe or produced by extrusion. Conversely. objects produced by moulding, beating, welding, or

sculpture tend to be awkwardly described in terms of generalized cones.

A major issue in description and recognition arises from the vast number of objects that we can distin-

guish. This leads to an enormous data base of models and makes tie indexing process ofcrucial importance.

The problem is ubiquitous in artificial intelligence and has produced a number of schemes for matching on

the basis of partial descriptions. One recurrent theme is the use of abstraction to produce a smaller search

space, the solution being used to guide further search in a less abstracted version. At a suitably high level of

abstraction this can be recognized as the process which underlies the matcher in the Marr-Poggio theory of

stereo described in Section 4.1. In the specific case of vision, Nevatia and Binford [NFVA77] and Marr and

Nishihara [MARR78b] discuss various schemes for indexing. Agin [AGIN72], Nevatia and Binford [NEVA77],

and Marr and Nishihara [MARR78b] note that a kinematic linkage can generally be approximated by a single

cone. Such approximate descriptions provide for hierarchical descriptions at a useful variety of scales. Often,

the most useful approximation is based on the most proximal link, more detailed descriptions deriving from

applying the same process to the distal links of the chain. Brooks and Binford 111R00801 use subcategories of

objects to achieve property inheritance and facilitate indexing. For example, they exploit the fact that a Boeing

747-SP is a special kind of Hoeing 747 (with slight variations pertinent to recognizing one), and a Boeing 747 is

a special kind of wide bodied jet (distinguished from other aircraft such as Boeing 727's on the basis of overall

length and width to length ratio.)

Nrooks and Binford I[iROOS0, BROO811 draw attention to the need to incorporate constraints into ob-

ject descriptions. For example, a person has two legs which are of (roughly) the same length, and are roughly

as long as the person's body. '[he actual sizes scalc with (a priori unknown) camera position. As usual,

constraints propagate. [or example, the engine pods of a jet are deployed symmetrically on de front wings on

either side of dw luslage. Findinp ai aircraft %% ing constrains the overall scale of the aircraft, and hence die

C." i ilimih of the flsc'l(m,,c. Stich colnstraiits are rcpr-c.ncd I atnmlrillv I% imnmei.al ineqt.ditics. Irooks IIRSX)811

____________________________-. . . . . . .'-!
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desi-ibes a program that determiines the solutions of a set of such incqualiuiies. If in object recognizecd as a

person's body' is much larger than one thought to bc a tree, then the person is prohably much nearer than the

tree. Mechanisms for taking into account relatively remote possibilities such as giants and toy trccs have been

proposed (for example, [AN DF-S 11.

Finally, we consider thc process of' extracting from an image die spine, cross section function, and sweep-

ing rule which define a generalizecd cone. Thc work on this problem to date rcquircs a number of simplifying

assumptions. For example, Nevatia and Binford implicitly assume that the cross section function is circular

INE:VA771. Marr IMARR77I considered tie problem in considerable detail and showed how, in a restricted

case, a straight spine can be extracted from the inflection points on the bounding contour of an object. Brady

showed that the spine can be extracted more reliably by using stationary points of curvature [IIRAI)79b1.

Marr's work assumes that the bounding contour is planar, which is overly restrictive [BRUS8iI. lie also

proposed a classification of the images of the joins between two straight spine cones.
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